—e-o e
Number Systems and Codes

+ Convert decimal numbers to binary and convert binary numbers to decimal

+ Convert binary and decimal numbers to octal and convert octal numbers to binary
and decimal

+ Convert binary and decimal numbers to hexadecimal and convert hexadecimal

numbers to binary and decimal

Describe the ASCII code, excess-3 code, and Gray code

Understand Error Detection and Correction Code

+ +

. 5.1 BINARY NUMBER SYSTEM '

The binary number system is a system that uses only the digits 0 and 1 as codes. All other digits (2 to 9) are
thrown away. To represent decimal numbers and letters of the alphabet with the binary code, you have to
use different strings of binary digits for each number or letter. The idea is similar to the Morse code, where
strings of dots and dashes are used to code all numbers and letters. What follows is a discussion of decimal
and binary counting.

Decimal Odometer

Te understand how to count with binary numbers, it helps to review how an odometer (miles indicator of a
car) counts with decimal numbers. When a car is new, its odometer starts with

00000
After 1 km the reading becomes
00001

@ B Digital Principles and Applications

Successive kms produce 00002, 00003, and so on, up to
00009

A familiar thing happens at the end of the tenth km. When the units wheel turns from 9 back to 0, a tab on
this wheel forces the tens wheel to advance by 1. This is why the numbers change to

00010

Reset-and-Carry

The units wheel has reset to 0 and sent a carry to the tens wheel. Let’s call this familiar action reset and carry.
The other wheels of an odometer also reset and carry. For instance, after 999 kms the odometer shows

00999

What does the next km do? The units wheel resets and carries, the tens wheel resets and carries, the
hundreds wheel resets and carries, and the thousands wheel advances by 1, to get

01600

Binary Odometer

Visualize a binary odometer as a device whose wheels have only two digits, 0 and 1. When each wheel turns,
it displays 0, then 1, then back to 0, and the cycle repeats. A four-digit binary odometer starts with

0000 (zero)

After 1 mile, it indicates

0001 (one)
The next mile forces the units wheel to reset and carry, so the numbers change to
0010 (two)

The third mile results in 4-Digit Binary Numbers

0011 (three) -
Decimal
After 4 miles, the units wheel resets and carries, tI}e
second wheel resets and carries, and the third wheel ad- (])
vances by 1: 2
0100 (four) 3
Table 5.1 shows all the binary numbers from 0000 to ;
1111, equivalent to decimal 0 to 15. Study this table care- 6
fully and practice counting from 0000 to 1111 until you 7
can do it easily. Why? Because all kinds of logic circuits g
are based on counting from 0000 to 1111. 9
The word bit is the abbreviation for binary digit. Table 10
5.1 is a list of 4-bit number from 0000 to 1111. When a 1
binary number has 4 bits, it is sometimes called a nib- 12
ble. Table 5.1 shows 16 nibbles (0000 to 1111). A binary ii
number with 8 bits is known as a byre; this has become 15
the basic unit of data used in computers. You wil} learn

MNumber Systems and Codes @

more about bits, nibbles, and bytes in later chapters, For now memorise these definitions:
bit =X
nibble = XXXX
byte = XXXXXXXX

where the X may bea ora 1.

1. What is the binary number for decimal 137
~ 2. What is the decimat equivalent of binary 1001?
3. How many biniary’ digits (bits} are required to represent decimal 157

' 5.2 BINARY-TO-DECIMAL CONVERSION '

Table 5.1 lists the binary numbers from 0000 to 1111. But how do you convert larger binary numbers into
their decimal values? For instance, what does binary 101001 represent in decimal numbers? This section
shows how to convert a binary number quickly and easily into its decimal equivalent.

Positional Notation and Weights

We can express any decimal integer (a whole number) in units, tens, hundreds, thousands, and so on. For
instance, decimal number 2945 may be written as
2945 =2000+900+ 40+ 5
In powers of 10, this becomes
2945 = 2(10%) + 9(10%) + 4(10%) + 5(10%)

The decimal number system is an example of positional notation, each digit position has a weight or
value. With decimal numbers, the weights are units, tens, hundreds, thousands, and so on. The sum of all the
digits multiplied by their weights gives the total amount being represented. In the foregoing example, the 2

is multiplied by a weight of 1000, the 9 by a weight of 100, the 4 by a weight of 10, and the 5 by a weight of
1; the total is

2000+ 900 + 40 + 5 = 2945

Binary Weights

In a similar way, we can rewrite any binary number in terms of weights. For instance, binary number 111
becomes

I11=100+10+1 5.1)
In decimal numbers, this may be rewritten as
T=4+2+1 (5.2)

‘Writing a binary number as shown in Eq. (5.1} is the same as splitting its decimal equivalent into units, 2s,
and 4s as indicated by Eq. (5.2). In other words, each digit position in a binary number has a weight. The least

@ Digital Principles and Applications

significant digit (the one on the right) has a weight of 1. The
second position from the right has a weight of 2; the next, 4;

Binary System

and then 8, 16, 32, and so forth. These weights are in ascending Bit Position Weight
powers of 2; therefore, we can write the foregoing equation as 1 (Right most) 1
7=120+12h+12% § : i
Whenever you look at a binary number, you can find its deci- 4 8
mal equivalent as follows: 5 16
1. When there is a 1 in a digit position, add the weight of 6 32
that position. 7 lg:

2. When there is a 0 in a digit position, disregard the weight g

of that position. For example, binary number 101 has a decimal equivalent of
4+0+1=5
As another example, binary number 110! is equivalent to
8+4+0+1=13
Still another example is 11001, which is equivalent to
16+8+0+0+1=25

Streamlined Method

We can streamline binary-to-decimal conversion by the following procedure:

1. Write the binary number.

2. Directly under the binary number write 1, 2,4, 8, 16 ... , working from right to left.
3. If a zero appears in a digit position, cross out the decimal weight for that position.
4. Add the remaining weights to obtain the decimal equivalent.

As an example of this approach, let us convert binary 101 to its decimal equivalent:

STEP1 101
STEP2 421
STEP3 421
STEP4 4+1=5
As another example, notice how quickly 10101 is converted to its decimal equivalent:
1 01 0 1
16 8 42 1 -5 21
Fractions

So far, we have discussed binary integers (whole numbers), How are binary fractions converted into
corresponding decimal equivalents? For instance, what is the decimal equivalent of 0.1017? In this case, the
weights of digit positions to the right of the binary point are givenby 1 1 1 ., andso on. In powers of 2,
the weights are

278 2T 273t e

Number Systems and Codes @

or in decimal form: — —

05 025 0.125 0.0625 etc.
Here is an example. Binary fraction 0.101 has a _POV_M.S ?f?' . Decimal Equivalent , {b.bm'mon ;
decimal equivatent of 2? 1
2 2
01 0 1 22 4
0.5+0+0.125 = 0625 2 8
Another example, the decimal equivalent of i: ;g
0.1101 is . 64
01 1 01 27 128
3
0.5 +0.25 + 0+ 0.0625 = 0.8125 2 256
2 512
. z;lﬁ;-‘- . 1,024 o 1K
Mixed Numbers 21l 2,048 2K
For mixed numbers (numbers with an integer zii 4,096 4K
and a fractional part), handle each part accord- | - 21 = 8,192 3K
ing to the rules just developed. The weights for a il 5 ;g’ggg ;gﬁ
mixed number are 16 65.536 64K
ete. 22 22 20 20 . 27l 272 2% et | 2V 131,072 128K
1T 218 262,144 256K
Binary boint 21 524,288 512K
1nary potn oo 1,048,576 1,024K = 1M
For future reference, Table 5.3 lists powers of 22 2.097.152 2,048K =2M
2 and their decimal equivalents and the numbers 2% 4,194,304 4,096K =4M

of K and M. The abbreviation K stands for 1024.
Therefore, 1K means 1024. 2K stands for 2048, 4K represents 4096, and so on. The abbreviation M stands

for 1,048,576, which is equivalent to 1024K (1024 x 1024 = 1,048,576). A memory chip that stores 4096 bits
is called a “4K memory.” A digital device might bave a memory capacity of 4,194,304 bytes. This would be

referred to as a “4-megabyte (Mb) memory.”

(4 :W Convert binary 110.001 to a decimal rumber.

Solution

i 1 o 0 0 i
4 2 ¥ 88 025 0.125 - 6.125

1 1 T
2 1 05 0.25=>11.75

A computer has a 2 Mb memory. What is the decimal equivalent of 2 Mb?

@ Digitaf Principles and Applications

Solution _
2 % 1,048,576 = 2,097,152
This means that the computer can store 2,097,152 bytes in its memory,

4. What is the decimal equivalent of 100107
5. What is the binary equivalent of 357
6. Abinary number has 9 bits. What is the binary weight of the most significant bit?

. 5.3 DECIMAL-TO-BINARY CONVERSION .

One way to convert a decimal number into its binary equivalent is to reverse the process described in the
preceding section. For instance, suppose that you want to convert decimal 9 into the cortesponding binary
number. All you need to do is express 9 as a sum of powers of 2, and then write 1s and Os in the appropriate
digit positions:

9=8+0+0+1
— 1001
As another example:

25=16+8+0+0+1
— 11001

Double Dabble

A popular way to convert decimal numbers to binary numbers is the double-dabble method. In the double-
dabble method you progressively divide the decimal number by 2, writing down the remainder after each
division, The remainders, taken in reverse order, form the binary number. The best way to understand the
method is to go through an example step by step. Here is how to convert decimal 13 to its binary equivalent

Step T Divide 13 by 2, writing your work like this:

6
2)? 1 - (first remainder)

The quotient is 6 with a remainder of 1.

Step 2 Divide 6 by 2 to get

zrg 0 — (second remainder)
5 m 1 — (first remainder)

This division gives 3 with a remainder of 0.

Number Systems and Codes @

1
2 ﬁ 0 — (second remainder)
ZB 1 — (first remainder)
2 m 1 - (first remainder)

Step 3 Again you divide by 2:

Here you get a quotient of 1 with a remainder of 1.

Step 4 One more division gives

zr? (fourth remainder)
23
3
23

In this final division 2 does not divide into 1; thus, the quotient is 0 with a remainder of 1.

Read down

= e

Whenever you arrive at a quotient of 0 with a remainder of 1, the conversion is finished. The remainders
when read downward give the binary equivalent. In this example, binary 1101 is equivalent to decimal 13.

There is no need to keep writing down 2 before each division because you are always dividing by 2. Here
is an efficient way to show the conversion of decimal 13 to its binary equivalent:
0
1
3

6
2)i

Read down

— S b

Fractions

As far as fractions are concerned, you multiply by 2 and record a carry in the integer position. The carries read
downward are the binary fraction. As an example, 0.85 converts to binary as follows:

0.85x 2=1.7=0.7 with a carry of |

0.7x2=1.4=04 withacarry of 1

0.4x2=0.8=028 with acarry of 0 Read down

0.8 x2=1.6=0.6 withacarry of 1

06x2=1.2=02 withacarry of |

0.2x2=04=04 withacarry of ¢

Reading the carries downward gives binary fraction 0.110110. In this case, we stopped the conversion

process after getting six binary digits. Because of this, the answer is an approximation. If more accuracy is
needed, continue multiplying by 2 until you have as many digits as necessary for your applicaticn.

@ Digitaf Principles and Applications

Useful Equivalents

Table 5.4 shows some decimal-binary equivalences. This will be useful in the future. The table has an
important property that you should be aware of. Whenever a binary number has all 1s {consists of only Is),
you can find its decimal equivalent with this formula:

Decimal = 27!
where # is the number of bits. For instance, 1111 has 4 bits; therefore, its decimal equivalent is
Decimal =2* - 1=16-1=15

(@) Table 5.4)

Decimal-Binary Equivalences

Decimal

Binary

1
3
7
15
it

63
127
255
311
1,023
2,047
4,095
8,191
16,383
32,767
65,535

1

11

111

1111

11118

11 1111

11 1

111 1111

IS RINY!

1T 1111 1111

111 H1L H
118 1111 1111
11111 11T 11
111111 111 1111
ILE P 111 11
I 1 i1 1

As another example, 1111 1111 has 8 bits, so

Decimal = 28— | =256 - 1 = 255

BCD-8421 and BCD-2421 Code

Binary Coded Decimal (BCD) refers to rep-
resentation of digits 0-9 in decimal system

(@4 Table 5.5) BCD-8421 and BCD-2421 Code

by 4-bit unsigned binary numbers. The usual Decimal BCD-8421 BCD-2421
method is to follow 8421 encoding which o 0000 0000
employs conventional route of weight place- 1 0001 0001
ments like 8 representing the weight of the 4' 2 0010 0010
place (as 2*' = g), 4, i.e. 2>~ of the 3 place. 3 0011 gol1
2, i.e. 271 of the 2 place and 1, i.c. 2! 4 0100 0100
of the 1™ place. The 2421 code is similar to 5 0101 1011
8421 code except for the fact that the weight 6 0110 1100
assigned to 4" place is 2 and not 8. The deci- 7 0111 1101
mal numbers 0--9 in these two codes then can 8 1000 1110
be represented as shown in Table 5.5. ? 1001 11l

Number Systems and Codes @

As an example, decimal number 29 in BCD-8421 is written as 00101001 (0010 representing 2 and 1001
representing 9) while in BCD-2421, it is written as 00101111 {0010 representing 2 and 1111 representing
9).

Convert decimal 23.6 to a binary number.

Solution Split decimal 23.6 into an integer of 23 and a fraction of 0.6, and apply double dabble to each part.

1] 1
i 0
2 1 ’ Read down
5 1
11 1
zjz N

and
0.6x2=12=02 withacarryof]
0.2x2=04=04 with a carry of 0 :
04%x2=08=038 withacarryof(Read down
0.8x2=1.6=0.6 withacarryof | |
06x2=0.2=02 withacamryof | |

The binary number is 1011 1 ..l(}() i1. This 10-bit number is an approximation of decirmal 21.6 because we terminated
the conversion of the fractional part after 5 bits.

A digital computer processes binary numbers that are 32 bits long. If a 32-bit number has all
1s, what is its decimal equivalent?

" Decimal =22 -1 - @H(2H2HH - 1
. C o ={256)(256) (256)(256) - 1= 4,294,967,295

7. What is double dabble?
8. A binary number is composed of twelve 1s. What is its decimal equivalent?
9. What is the binary number for decimal 2557

.5.4 OCTAL NUMBERS '

The base of a number system equals the number of digits it uses. The decimal number system has a base of
10 because it uses the digits 0 to 9. The binary number system has a base of 2 because it uses only the digits
0 and 1. The octal number system has a base of 8. Although we can use any eight digits, it is customary to
use the first eight decimal digits:

0,1,2,3,4,5,6,7

@ Digital Principles and Applications

(There is no 8 or 9 in the octal number code.) These digits, 0 through 7, have exactly the same physical
meaning as decimal symbols; that is, 2 stands for ee_ 5 symbolizes esese and so on.

Octal Odometer

The easiest way to learn how to count in octal numbers is to use an octal odometer. This hypothetical device
is similar to the odometer of a car, except that each display wheel contains only eight digits, numbered 0 to
7. When a wheel turns from 7 back to 0, it sends a carry to the next-higher wheel.

Initially, an octal odometer shows
0000 (zero)
The next 7 kms produces readings of

0001 {(one)
0002 (two)
0003 (three)
0004 (four)
0005 {five)
0006 (six)

0007 (seven)
At this point, the least-significant wheel has run out of digits. Therefore, the next km forces a reset and
carry to obtain
0010 {eight)
The next 7 kms produces these readings: 0011, 0012, 0013, 0014, 0015, 0016, and 0017. Once again, the
least-significant wheel has run out of digits. So the next km results in a reset and carry:
0020 (sixteen)

Subsequent kms produce readings of 0021, 0022, 0023, 0024, 0025, 0026, 0027, 0030, 0031, and so on.

You should have the idea by now. Each km advances the least-significant wheel by one. When this wheel
runs out of octal digits, it resets and carries. And so on for the other wheels. For instance, if the odometer
reading is 6377, the next octal number is 6400.

Octal-to-Decimal Conversion

How do we convert octal numbers to decimal numbers? In the octal number system each digit position
corresponds to a power of 8 as follows:

8l 82 8! g0 g1 g2g?
T
Octal point
Therefore, to convert from octal to decimal, multiply each octal digit by its weight and add the resulting
products, Note that 8% = 1.
For instance, octal 23 converts to decimal like this:

28H+38%=16+3=19

Number Systems and Codes @

Here is another example. Octal 257 converts to
28+ 5@H+ 78N =128+40+7=175

Decimal-to-Octal Conversion

How do you convert in the opposite direction, that is, from decimal to octal? Octal dabble, a method similar
to double dabble, is used with octal numbers. Instead of dividing by 2 (the base of binary numbers}, you
divide by 8 (the base of octal numbers) writing down the remainders after each division. The remainders in
reverse order form the octal number. As an example, convert decimal 175 as follows:

0
8)2 2 —(third remainder)
8 m 5 — (second remainder)
8 5175 7 — (first remainder)

You can condense these steps by writing

0 2 _
2 5 Read down

21
8 5175
Thus decimal 175 is equal to octal 257.

Fractions

With decimal fractions, multiply instead of divide, writing the carry into the integer position. An example of
this is to convert decimal 0.23 into an octal fraction.
023 x8=184=0.84 withacamyofl
084x8=672=0.72 withacarryofé | Read down
0.72x8=576=076 withacarryof 5
etc.

The carries read downward give the octal fraction 0.165. We terminated after three places; for more
accuracy, we would continue multiplying to obtain more octal digits.

Octal-to-Binary Conversion

Because 8 (the base of octal numbers) is the third power of 2 (the base of binary numbers), you can convert
from octal to binary as follows: change each octal digit to its binary equivalent. For instance, change octal 23
to its binary equivalent as follows:

2 3
\ l
010 011

Here, each octal digit converts to its binary equivalent (2 becomes 010, and 3 becomes 011). The binary
equivalent of octal 23 is 010 011, or 010011. Often, a space is left between groups of 3 bits; this makes it
easier to read the binary number.

@ Digitat Principles and Applications

As another example, octal 3574 converts to hinary as follows:

3 5 7 4
)) \ {
011 101 11 100

Hence binary 011101111100 is equivalent to octal 3574. Notice how much easier the binary number is to
read if we leave a space between groups of 3 bits: 011 101 111 100,

Mixed octal numbers are no problem. Convert each octal digit to its equivalent binary value. Octal 34.562
becomes

3 4 .5 6 2
ool)
011 100 . [0l 110 010

Binary-to-Octal Conversion

Conversion from binary to octal is a reversal of the foregoing procedures. Simply remember to group the bits
in threes, starting at the binary point; then convert each group of three to its octal equivalent (0s are added at
each end, if necessary). For instance, binary number 1011.01101 converts as follows:

1011.01101 — 001 011. 011 010
\J U X
1 33 2

Start at the binary point and, working both ways, separate the bits into groups of three. When necessary,
as in this case, add Os to complete the outside groups. Then convert each group of three into its binary
equivalent. Therefore:

101101101 = 13.32

The simplicity of converting octal to binary and vice versa has many advantages in digital work. For one
thing. getting information into and out of a digital system requires less circuitry because it is easier to read
and print out octal numbers than binary numbers. Another advantage is that large decimal numbers are more
easily converted to binary if first converted to octal and then to binary, as shown in Example 5.6.

Solution One approach is double dabble. Another approach is octal dabble, followed by octal-to-binary conversion,
Here is how the second method works: C _— -

] 5
5 5 Read down
45 3
8)363
Next, convert octal 553 to its binary equivalent:
5 5 k!
\J i {

101 101 011

The double-dabble approach would produce the same answer, but it is tedious because yeou have to divide by 2 nine
times before the conversion terminates.

Number Systems and Codes

10. What are the digits used in the octal number system?
11. What is the octal number for binary 1117 What is the decimal number for binary 111?

. 5.5 HEXADECIMAL NUMBERS '

Hexadecimal numbers are used extensively in — . . .
4 Hexadecimal Digits

microprocessor work. To begin with, they are much

shorter than binary numbers. This makes them easy to Decimal Binary Hexadecimal
write and remember. Furthermore, you can mentally
. 0 0000 G
convert them to binary whenever necessary. X 0001 .
The hexadecimal number system has a base of 16. 2 0010 2
Although any 16 digits may be used, everyone uses 0 3 0011 3
to 9 and A to F as shown in Table 5.6. In other words, 4 0100 4
after reaching 9 in the hexadecimal system, you continue 5 0101 5
counting as follows: 6 0110 6
7 0111 7
A B CDETF 8 1600 8
. 9 1001 9
Hexadecimal Odometer 10 1010 A
The easiest way to learn how to count in hexadecimal : ; :(1)(1)(1) g
numbers is to use a hexadecimal odometer. This 13 1101 D
hypothetical device is similar to the odometer of a car, 14 1110 E
except that each display wheel has 16 digits, numbered 0 15 111 F
to F. When a wheel turns from F back to 0, it sends a carry
to the next higher wheel.
Initially, a hexadecimal odometer shows
0000 (zero)
The next 9 kms produces readings of The next 6 ks gives
0001 {one) 000A (ten)
0002 (two) 00uUB (eleven)
0003 (three) 060C (twelve)
0004 (four) 000D (thirteen)
0005 {five) 000E (fourteen)
0006 (six) 000F (fifteen)

0007 (seven)
00038 (eight}
0009 (nine}

@ Digital Principles and Applications

At this point, the least-significant wheel has run out of digits. Therefore, the next km forces a reset and

carry to obtain
0010 (sixteen)

The next 15 kms produces these readings: 0011, 0012, 0013, 0014, 0015, 0016, 0017, 0018, 0019, 001A,
001B, 001C, 001D, 001E, and 001F. Once again, the least significant wheel has run out of digits. So, the next
km results in a reset and carry:

0020 (thirty-two)

Subsequent kms produce readings of 0021, 0022, 0023, 0024, 0025, 0026, 0027, 0028, 0029, 002A, 002B,

002C, 002D, 002E, and 002F.

You should have the idea by now. Each km advances the least-significant wheel by one. When this wheel
runs out of hexadecimal digits, it resets and carries, and so on for the other wheels. For instance, here are
three more examples:

Number Next number
835C 835D
A47F A480
BFFF C000

Hexadecimal-to-Binary Conversion

To convert a hexadecimal number to a binary number, convert each hexadecimal digit to its 4-bit equivalent
using the code given in Table 5.5. For instance, here’s how 9AF converts to binary:

9 A F
\ 1 \
1001 1010 1111

As another example, C5E2 converts like this:

C 5 E 2
\ i l 1
1100 0101 1110 0010

Binary-to-Hexadecimal Conversion

To convert in the opposite direction, from binary to hexadecimal, again use the code from Table 5.5. Here are
two examples. Binary 1000 1100 converts as follows:

1000 1100
1 L
8 C

Binary 1110 1000 1101 0110 converts like this:

1110 1000 1101 0110
3 \) \) \J
E 8 D 6

Number Systems and Codes @

In both these conversions, we start with a binary number and wind up with the equivalent hexadecimal
number,

Hexadecimal-to-Decimal Conversion

How do we convert hexadecimal numbers to decimal numbers? In the hexadecimal number system each
digit position corresponds to a power of 16. The weights of the digit positions in a hexadecimal number are
as follows
16 162 16' 16° . 1671 167 167
T

Hexadecimal point
Therefore, to convert from hexadecimal to decimal, multiply each hexadecimal digit by its weight and add
the resulting products. Note that 16°=1.
Here’s an example. Hexadecimal F8E6.39 converts to decimal as follows:
F8E6 = F(16%) + 8(16%) + E(161) + 6(16%) + 3(16 1) + 9(167%)

= 15(16%) + 8(16%) + 14(16") + 6(16%) + 3(167") + 9(167%)

=61,440 + 2048 + 224 + 6 + 0.1875 + 0.0352

=63,718.2227

Decimal-to-Hexadecimal Conversion

One way to convert from decimal to hexadecimal is the hex dabble. The idea is to divide successively by 16,
writing down the remainders. Here’s a sample of how it’s done. To convert decimal 2479 to hexadecimal, the
first division is

154 15—>F
1612479
In this first division, we get a quotient of 154 with a remainder of 15 (equivalent to F). The next step is

9 105 A
154 15>F

16)2479

Here we obtain a quotient of 9 with a remainder of 10 (same as A). The final step is

0 959
9 10-A Read down
154 15—>F

16 i2479

Therefore, hexadecimal 9AF is equivalent to decimal 2479.

Notice how similar hex dabble is to double dabble. Notice also that remainders greater than 9 have to be
changed to hexadecimal digits {10 becomes A, 15 becomes F, etc.).

@ Digital Principles and Applications

Using Appendix 1*

A typical microcomputer can store up to 65,535 bytes. The decimal addresses of these bytes are from 0 to
65,535, The equivalent binary addresses are from

4000 0000 0000 0000
1111 1111 1111 1111

The first 8 bits are called the upper byte, and the second 8 bits are the Jower byre.

If you have to do many conversions between binary, hexadecimal, and decimal, learn to use Appendix 1. It
has four headings: binary, hexadecimal, upper byte, and lower byre. For any decimal number between 0 and
255, you would use the binary, hexadecimal, and lower byte columns. Here is the recommended way to use
Appendix 1. Suppose you want to convert binary 0001 1000 to its decimal equivalent. First, mentally convert
to hexadecimal;

0001 1000 — 18 (mental conversion)
Next, look up hexadecimal 18 in Appendix | and read the corresponding decimal value from the lower-
byte column:
18 =+ 24 (look up in Appendix 1)
For another example, binary 1111 0000 converts like this:
1111 0000 — FO — 240

The reason for mentally converting from binary to hexadecimal is that you can more easily locate a
hexadecimal number in Appendix 1 than a binary number. Once you have the hexadecimal equivalent, you
can read the lower-byte column to find the decimal equivalent.

When the decimal number is greater than 255, you have to use both the upper byte and the lower byte in
Appendix 1. For instance, suppose you want to convert this binary number to its decimal equivalent:

1110 1001 0111 0100
First, convert the upper byte to its decimal equivalent as follows:
1110 1001 — E9 — 59,648 (upper byte)
Second, convert the lower byte to its decimal equivalent:
0111 0100 — 74 — 116 (lower byte)
Finally, add the upper and lower bytes to obtain the total decimal value:
39,648 + 116 = 59,764

Therefore, binary 1110 1001 0111 0100 is equivalent to decimal 59,764.

Once you get used to working with Appendix 1, you will find it to be a quick and easy way to
convert between the mumber systems. Because it covers the decimal numbers from 0 to 65,535, Appendix 1
is extremely useful for microprocessors where the typical memory addresses are over the same decimal
range.

* A number of hand calculators will convert binary, octal, decimal and hexadecimal numbers.

Number Systems and Codes

contain these bytes:

0011
1100
0101
0010
1111
0010
1101
0100
o111
1100
1000
0010
0010
0011
0ol1
0001

Convert these bytes to their hexadecimal equivalents.

1100
1101
0111
1000
0001
1010
0100
0000
0111
0011
0100
1000
0001
1010
1110
1111

Solution Here are the stored bytes and théir hexadecimal equivalents:

. Memorycontents -

0011 1100+
1100 1101 -

Cewtond

0010 1000 B

1111 0001
0010 1010
1101 0100
0100 0000
0111 0111
1100 0011
1000 0100
0010 1000
0010 0001
0011 1010
0011 1110 .
0001 1111

Hexadecimal equivalents o

CcD
57
28
Fi

2A
D4
40
77

C3
84
28
21
3A
3E
1F

@)

A computer memory can store thousands of binary instructions and data. A typical
microprocessor has 65,536 addresses, cach storing a byte. Suppose that the first 16 addresses

‘What is the point of this example? Whgm discussing the contents of 2 computer memory, We Gaf use either binary
we can say that the first address contains 0011 1100, or we can say

numbers or hexadecimal numbers. For instance,

4 188 ! Digital Principles and Applications

that it contains 3C. Bither way, we obtain the sam information. But notice how much easier it s 10 s4y, Write, aod
thirik 3C than it is to say, write, and think 0011 1100, In other words, hexadecimal numbers are much ‘easier Tor people
to work with. S

Convert the hexadecimal numbers of the preceding example to their decimal equivalents.

Solution The first address contains 3C, which convetts like this:
3161 + C(16% = 48 + 12 = 60

Even easier, look up the decimal equivalent of 3C m Appendix 1, and you get 60. Either by powers of 16 or with
reference to Appendix 1, we can convert the other memory contents to get the following:

Meniory contents Hexadecimal e‘q_u_ﬁahnts - Decimal equivalénts
0011 1100 3¢ : 60
1100 1101 ep - o 205
0101 0111 sy gy
0010 1000 B D
1111 0001 R T g
0010 1010 _ 7 O R S
1101 0160 DA T o o
010111 - 7
1100 0011 RERER o
oot s
00100001 R 5 R
0011 1010 o 3AL s
0011 1110 . 3E 62
0001 1111 IF 3

Convert decimal 65,535 to its hexadecimal and binary equivalents.

Solution Use hex dabble as follows:

o 155 F -

15 155 F Read down
255 159F | s e n
4095 155F

16 i65,535
Therefore, decimal 65,535 is equivalent to hexadecimal FFFF.

Next, convert from hexadecimal to binary as follows: S _
F CF LR R

1111 111 1111 1H1

This means that hexadecimal FFFF isequivalen_xtobinaryiill HITDDLLE 2T

Number Systems and Codes @

Show how to use Appendix 1 to convert decimal 56,000 to its hexadecimal and binary
equivalents.

Solution The firstthing 0 do i to locate the largest decional number equal to 56.000 o less in Appendix 1. The
number is 55,808, which converts like this: o _
. 55,808 —DA (upper byte)
Next, you need to subtract this upper byte from the eriginal number:
56,000 - 55,808 = 192 (difference)
This difference is always less than 256 and represents the lower byte, which Appendix 1 converts as follows:
192 — CO
Now, combine the upper and lower byte to obtain
: ’ 0 DACO
which you can mentaﬂy cm:wcﬁ 0 bmary o '
‘ DACO— 1101 1010 11900000

Convert Table 5.4 into a new table with three column headings: “Decimal,” “Binary,” and
“Hexadecimal.”

Solution This is easy. Convert each group of bits to its hexadecimal equivalent as shown in Table 5.7.

Decimal-Binary-Hexadecimal Equivalences

Binary : hexadecimal
i 1 o 1
w3 11 . 3
15 1111 . .F
1in 1F -
R 111111 " '3F
127 1111111 7F
255 L 11111111 FF
511 INERRRELS! LFF
1,023 111111111 3FF
2047 .. 111111111 o 7FF
4,095 - _ 111111111111 FFF
g191 . 11 1FFF
16,383 S 1111114111111 3FFF
32,767 S 11311t TFFF
65535 IRESRRRBAIRRAINS! FFFF

12, What are the symbo‘ls used in hexadecimal numbers?
13. What is the binary equivalent of hexadecimal 3C?
14. What is the decimal equivalent of “hexadecimal 3C?

@ Digital Principles and Applications
. 5.6 THE ASCHl CODE. '

To get information into and out of a computer, we need to use some kind of aiphanumeric code (one for let-
ters, numbers, and other symbols). At one time, manufacturers used their own alphanumeric codes, which
led to all kinds of confusion. Eventually, industry settled on an input-output code known as the American
Standard Code for Information Interchange (ASCII, pronounced ask’-ee). This code allows manufacturers to
standardize computer hardware such as keyboards, printers, and video displays.

Using the Code
The ASCII code is a 7-bit code whose format is
XeXsXa X3 X0 X1 Xy

where each X'isa 0 or a 1. Use Table 5.8 to find the ASCII code for the uppercase and lowercase letters of the
alphabet and some of the most commonly used symbols. For example, the table shows that the capital letter
A has an Xg X5 X, of 100 and an X3 X5.X; Xp of 0001. The ASCII code for A is, therefore,

1000001
For easier reading, we can leave a space as follows:

160 0001 (A)
The letter a is coded as

110 0001 (a)
More examples are

110 0010 {b)

ASCH Code
Xs Xs Xy

i1o

o
—

X Xo X1 X 0i0

=
.
L
=
=
L
=
—

0001 !
0010 «“
0011 #
0100 $
0101 %
0110 &
o111 ’
1000 (
1001)
1010 *
1011 +
1100 ,
101 -

1110 .
111 /

LI . N T
NMEdOHwRO o
Nt o 8 2 w4 o

OQZEZErRu=Oommunws»>E
O D —F—-mEm om0 A0 OB

VO A e .

Number Systems and Codes ' @

1100011 (o)
1100100 (d)

and so on.
Also, study the punctuation and mathematical symbols. Some examples are

0100100 (%
010 1011 (+)
011 1101 (=)
In Table 5.7, SP stands for space (blank). Hitting the space bar of an ASCII keyboard sends this into a

microcomputer:
010 0000 (space)

Parity Bit

The ASCI code is used for sending digital data over telephone lines. As mentioned in the preceding chapter,
1-bit errors may occur in transmitted data. To catch these errors, a parity bit is usually transmitted along with
the original bits. Then a parity checker at the receiving end can test for even or odd parity, whichever parity
has been prearranged between the sender and the receiver. Since ASCII code uses 7 bits, the addition of a
parity bit to the transmitted data produces an 8-bit number in this format:

X7X6X5X4 X3X2X1X0
T
Parity bit

This is an ideal length because most digital equipment is set up to bandle bytes of data.

EBCDIC as Alphanumeric Code

There exists few others but relatively less used alphanumeric codes. The EBCDIC is an abbreviation of
Extended Binary Coded Decimal Interchange Code. It is an eight-bit code and primarily used in IBM make
devices. Here, the binary codes of letters and numerals come as an extension of BCD code. The bit assignments
of EBCDIC are different from the ASCII but the character symbols are the same.

‘ :W With an ASCII keyboard, each keystroke produces the ASCII equivalent of the designated
character. Suppose that you type PRINT X, What is the output of an ASCII keyboard?

Solution The sequence is as follows: P-(101 0000), R (101 0010), I (100 1001), N'(100 1110), T (101 0100), space
(010:000), X (101 1000): - - ' ' o

A computer sends a message to another computer using an odd-parity bit. Here is the
message in ASCII code, plus the parity bit:

1100 1000

0100 0101

0100 1100

0100 1100

0100 1111

What do these numbers mean?

Digital Principles and Applications

@

Solution First, notice that each 8-bit number has odd parity, an indication that no 1-bit errors occurred during
transmission. Next, use Table 5.7 to translate the ASCH characters. If you do this correctly, you get a message of

HELLO.

15. What is the ASCII code?

16. What symbol is represented by the ASCII code 100 0000?
17. What ASCH code is used for the percent sign, %?

. 5.7 THE EXCESS-3 CODE .

The excess-3 code is an important 4-bit code sometimes used with binary-coded decimal (BCD) numbers. To
convert any decimal number into its excess-3 form, add 3 to each decimal digit, and then convert the sum to

a BCD number.
For example, here is how to convert 12 to an
excess-3 number. First, add 3 to each decimal digit:

1 1

+3 +3
4 5
Second, convert the sum to BCD form:
4 5
l 1
0100 0101

So, 4100 0101 in the excess-3 code stands for
decimal 12.

Table 5.9 shows the excess-3 code. In each case,
the excess-3 code number is 3 greater than the BCD
equivalent. Such coding helps in BCD arithmetic as

9’s complement of any excess-3 coded number can-

be obtained simply by complementing each bit. Take
for example decimal number 2. Its 9°s complement is
9 -2 =". Excess-3 code of 2 is 0101. Complementing
each bit we get 1010 and its decimal equivalent is 7.
To convert BCD to excess-3 we need an adder and for
the reverse we need a subtractor. These circuits are
discussed in the next chapter. Incidentally, if you need
an integrated circuit (IC) that converts from excess
3 to decimal, look at the data sheet of a 7443. This
transistor-transistor logic (TTL} chip has four input

Take another example; convert 29 to an excess-3
number:

2 9

+3 +3
5 12

! l
0101 1100

After adding 9 and 3, do not carry the 1 into the
next column; instead, leave the result intact as 12,
and then coavert as shown. Therefore, 0101 1100 in
the excess-3 code stands for decimal 29.

Excess-3 Code

Decimal BCD o Excess-3-. .
g 0000 0011
Y 0001 0100
2= 0010 - 0101
3 0011 .. 01O
-4 0100 L
5 o101 CUT000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

lines for the excess-3 input and 10 output lines for the decoded decimal output.

Number Systems and Codes @

The advantage of such coding will be understood from this example. Let an object move along a track and
move from one zone to another. Let the presence of the object in one zone is sensed by sensors ABC. If
consecutive zones are binary coded then zone-0 is represented by 4BC = 000, zone-1 by ABC = 001, zone-
2 by ABC = 010 and so on, as shown in Fig. 5.1a. Now consider, the object moves from zone-1 to zone-2.
Both BC has to change to sense that movement. Suppose, sensor B (may be an electro-mechanical switch)
reacts slightly late than sensor C. Then, initially 4BC = 000 is sensed as if the object has moved in the other
direction from zone-1 to zone-0. This problem can be more prominent if the object moves from zone-3 (4BC
= 011) to zone-4 (ABC = 100} when all three sensors has to change its value. Note that, if zones are gray
coded (Fig. 5.1b) such problem does not appear as between two consecutive zones only one sensor changes
its value,

5.8 . THE GRAY CODE

) —

Zone No. 0 | 1 1 2 | 3 l 4 5 l 6] 7 I
Sensor ABC 000 001 010 o1l 100 101 110 111
(Binary coded)
(a)
O _ -
Zone No. 0 l 1 I 2] 3 | 4 | 5 l 6 I 7 |
Sensor ABC 000 001 011 010 110 111 101 100
(Gray coded) b)
{

Object moving along a track with sensors: (a) Binary coded, (b) Gray coded

The disadvantage with gray code is that it is not good for arithmetic operation. However, comparing truth
tables of binary coded numbers and gray coded numbers (Table 5.18) we can design binary to gray converter
as shown in Fig. 5.2a and gray to binary converter as shown in Fig. 5.2b. Let’s see how these circuits work
by taking one example each.

(MSB) B4 G, G, By

" D7 G, G, “L—)ﬁf B,

B D' @ Gy : g

(LSB) B,) > Go G, 5} > By
(2) ' (b)

(a) Binary to Gray converter, (b) Gray to Binary converter

Consider, a binary number B3B8, B, By = 1011. Following the relation shown in Fig. 5.2a we get, G3 = B3 =
1,Gy=B30B,=100=1,G,=8,9B8 =00 1=1and Go=8, @ By= 18 1=0,1e. G3G2G, Gy = 1110
and we can verify the same from truth table.

@ Digital Principles and Applications

Similarly, for a gray coded number say, G3G,G, Gy

= 0111 from Fig. 5.2b we get, By = G = 0, B, = G4 Gray Code

@G=081=1,8=B,®G =1@©1=0and B, Decimal Gray Code Binary
:Bl (‘BG():O@ 1=1,1ie. B3BzBlBU=01{}l.Again 0 0000 0000
this conversion can be verified from Table 5.10 that 1 0001 0001
shows the Gray code, along with the corresponding 2 0011 0010
binary numbers. Each Gray-code number differs from 3 0010 0011
any adjacent number by a single bit. For instance, in 4 010 0100
going from decimal 7 to 8, the Gray-code numbers 5 0111 0101
change from 0100 to 1100; these numbers differ only 6 0101 0110
in the most significant bit. As another example, deci- 7 0100 0111
mal numbers 13 and 14 are represented by Gray-code 8 1100 1600
numbers 1011 and 1001; these numbers differ in only 9 1101 1001
.. 10 1111 1010
one digit position (the second position from the right). i 1110 1011
So, it is with the entire Gray code; every number dif- 12 1010 1100
fers by only 1 bit from the preceding number. 13 1011 1101
Besides the excess-3 and Gray codes, there are oth- 14 1001 1110
er binary-type codes. Appendix 5 lists some of these 15 1000 1111
codes for future reference. Incidentally, the BCD code

is sometimes referred to as the 8427 code because the _
weights of the digit positions from left to right are 8, 4, 2, and 1. As shown in Appendix 5, there are many
other weighted codes such as the 7421, 6311, 5421, and so ot

5.9 TROUBLESHOOTING WITH A LOGIC PULSER

Figure 5.3 shows a typical logic pulser, a trouble-
shooting tool that generates a brief voltage pulse
when its push-button switch is pressed. Because of
its design, the logic pulser (on the left) senses the Push-button switch
original state of the node and produces a voltage
pulse of the opposite polarity. When this happens,
the logic probe (on the right) blinks, indicating a
temporary change of output state.

Thévenin Circuit Using a logic pulser and a

Figure 5.4a shows the Thévenin equivalent circuit logic probe

for a typical logic pulser. The Thévenir voltage is

a pulse with an amplitude of 5 V; the polarity automatically adjusts to the original state of the test node. As
shown, the Thévenin resistance or output impedance is only 2. This Thévenin resistance is representative;
the exact value depends on the particular logic pulser being used. Typically, a TTL gate has an output resis-
tance between 12€ (low state) and 702 (high state). When a logic pulser drives the output of a NAND gate,
the equivalent circuit appears as shown in Fig. 5.4b. Because of the low output impedance (2€) of the logic
pulser, most of the voltage pulse appears across the load (12 to 70Q). Therefore, the output is briefly driven
into the opposite voltage state.

Number Systems and Codes @

290 2Q
+5V T
0 12Q
or to V
SV 70Q
0 = = =
{a) b)
+5V
SV 2 Test SUPPLY Test
0 I node node
or Short to
5V ground
0 = =
() (d)

(a) Thévenin equivalent of logic pulser, (b} Logic pulser driving NAND-gate
output, (c) Node stuck in high state

Testing Any Node

You can use a logic pulser to drive any node in a circuit, whether input or output. Almost always, the load
impedance of the node being driven is larger than the output impedance of the logic pulser. For this reason,
the logic pulser can usually change the state of any node in a logic circuit. Also, the pulse width is kept very
short (fractions of a microsecond) to avoid damaging the circuit being tested. (Note: Power dissipation is
what damages ICs. A brief voltage pulse produces only a small power dissipation.)

Stuck Nodes

When is a logic pulser unable to change the state of a node? When the test node is shorted to ground or to
the supply voltage. For instance, Fig. 5.4c shows the test node shorted to ground. In this case, all the voltage
pulse is dropped across the internal impedance of the logic pulser: therefore the test node is stuck at 0 V, the
low state.

On the other hand, the test node may be shorted to the supply voltage as shown in Fig, 5.4d. Most power
supplies are regulated and have impedances in fractions of 1Q. For this reason, most of the voltage pulse
is again dropped across the output impedance of the logic pulser, which means that the test node is stuck at
+5V.

Finding Stuck Nodes

If a circuit is faulty, you can use a logic pulser and logic probe to locate stuck nodes. Here’s how. Touch both
the logic pulser and the logic probe to a node as shown in Fig. 5.3. If the node is stuck in either state, the logic
pulser will be unable to change the state. So, if the logic probe does not blink, you have a stuck node. Then,
you ¢an look for solder bridges on any trace connected to the stuck node, or possibly replace the IC having
the stuck node.

@ Digital Principles and Applications
. 5.10 ERROR DETECTION AND CORRECTION '

Error Detection and Correction (EDAC) techniques are used to ensure that data is correct and has not been
corrupted, either by hardware failures or by noise occurring during transmission or a data read operation from
memory. There are many different error correction codes in existence. The reason for different codes being
used in different applications has to do with the historical development of data storage, the types of data
errors occurring, and the overhead associated with each of the error-detection techniques. We discuss some
of the popular techniques here with details of Hamming code.

Parity Code

We have discussed parity generation and checking in detail in Section 4.8. When a word is written into
memmory, each parity bit is generated from the data bits of the byte it is associated with. This is done by a tree
of exclusive-OR gates. When the word is read back from the memory, the same parity computation is done on
the data bits read from the memory, and the result is compared to the parity bits that were read. Any computed
parity bit that does not match the stored parity bit indicates that there was at least one error in that byte (or in
the parity bit itself). However, parity can only detect an odd number of errors. If even number of errors oceur,
the computed parity will match the read parity, so the error will go undetected. Since memory errors are rare
if the system is operating correctly, the vast majority of errors will be single-bit errors, and will be detected.

Unfortunately, while parity allows for the detection of single-bit errors, it does not provide a means of
determining which bit is in error, which would be necessary to correct the error. Thus the data needs to be
read again if an error is detected. Error Correction Code (ECC) is an extension of the parity concept.

Checksum Code

This is a kind of error detection code used for checking a large block of data, The checksum bits are generated
by summing all the codes of a message and are stored with data. Usuaily the block of data summed is of
length 512 or 1024 and the checksum results are stored in 32 bits that allow overflow. When data is read, the
sumiming operation is again done and checksum bits generated are matched with the stored one. If they are
unequal, then an error is detected. Obviously, it can fool the detection system if error occurring at one place
is compensated by the other.

Cycle Redundancy Code (CRC)

CRC code is a more robust error checking algorithm than the previous two. The code is generated in the
following manner. Take a binary message and convert it to a polynomial, then divide it by another predefined
polynomial called the key. The remainder from this division is the CRC. This is stored with the message.
Upon reading the data, memory controller does the same operation, i.e. divides the message by the same key
and compares with CRC stored. If they differ, then the data has been wrongly read or stored. Not all keys are
equally good. The longer the key, the better is the error checking. On the other hand, the calculations with
long keys can get quite complex. Two of the polynomials commonly used are:

CRC-16 = x5+ x;5 +xt 1
CRC-32 =3y +xpe +x23 Fx02 t X6t X1+ Xy Hxpg +Xg +2x7 + X5 +xg +xa +x+ 1

Usually, series of exclusive-OR gates are used to generate CRC code. We shall see in the next chapter that
the sum term arising out of addition is essentially an exclusive-OR operation.

Number Systems and Codes @

Introduced in 1950 by R W Hamming, this scheme allows one bit in the word to be corrected, but is unable to
correct events where more than one bit in the word is in error. These multi-bit errors can only be detected, not
corrected, and therefore will cause a system to malfunction. Hamming code uses parity bits discussed before
but in a different way. For » number of data bits, if number of parity bits required here is m, then

Hamming Code

2"zmtn+1

In the memory word, (i) all bit positions that are of the form 2’ are used as parity bits (like 1, 2, 4, 8, 16,
32...) and (ii) the remaining positions are used as data bits (like 3, 5,6, 7,9, 10, 11, 12, 13, 14, 17, 18...)
Thus code will be in the form of

P1P2D3 P4 D5 D6 D7 P8 D9 D10 D11 ...

where P1, P2, P4, P8. .. are parity bits and D3, D5, D6, D7... are data bits.

We discuss Hamming code generation with an example. Consider the 7-bit data to be coded is 0110101,
This requires 4 parity bits in position 1, 2, 4 and 8 so that Hamming coded data becomes 11-bit 1ong To
calculate the value of P1, we check parity of zeroth binary locations of data bits. This is shown in 3 row of
Fig. 5.5 for this example. Zeroth locations are the places where address ends with a 1. These are D3, D35, D9
and D11 for 7-bit data. Since we have total odd number of s in these 4 positions P1 = L. This is calculated as
done in case of parity generation (refer to Section 4.8) by series of exclusive-OR gates through the equation

P1=D3@D5@&DY® Dl

Similarly for P2, we check locations where we have 1 in address of the 1% bit, i.e. D3, D6, D7, D10 and
DI1. Since there are even number of 1s, P2 = 1. Proceeding in similar manner and examining parity of 2nd
and 3™ position, we get P4 =0 and P& = 0.

0001 | 0010 0011 | 0100 0101 | 0110} 0111 | 1000 § 1001 | 1010} 1011
Pl | P2 | D3| P431D5| D6 D7 | P8 | DO |DI0]| D1t

Data word (without parity) ¢ 1 1 0 1 0 1
P1 1] 1 0 1 1
P2] 0 1 0 0 1
P4 0 1 1 0
Pg 0 1 0 1

Data with parity | | 0 0 0 1 1 0 0 1 0 |

(@9 Fig. 5.5) Calculation of Parity Bits

Next we discuss how error in a Hamming coded data is detected and if it is in single bit, how it is corrected.
We continue with the previous example and consider that the data is incorrectly read in position D11 so that
11-bit coded data is 10001100100. Figure 5.6 describes the detection mechanism. First of all, we check the
parity of zeroth position and find it to be even. Since P1 = 1, the parity check fails and this is equivalent to
generating a parity bit at the output (last column} following the equation

Parity P1 check bit=D3 @ D5 & D9 @ D11t & P1

This is similar to parity checker in Section 4.8. Note that, in addition to data bits, we have also included the
corresponding parity bit to the input of exclusive-OR gate tree. Proceeding similarly for other positions, we

@ Digital Principles and Applications

find that except for P4 all other parity checks fail. Note that, even a single failure detects an error. However,
to correct the error, we use the output of last column 1011 (in the order P§ P4 P2 P1) and find its decimal
equivalent which is 11. So the data of location 11, which is D11 needs to be corrected.

Pl P2 | D3| P4 |D5|D6|D7| P8 | DS { DIO| D11 Parity | Party
check | bit
Received data word 1 0 0 0 1 1 0 0 1 0 0
PI] 1 0 1 0 1 0 Fail 1
P2 0 0 1 0 0 0 Fail 1
P4 0 1 1 0 Pass 0
P8 0 1 0 0 Fail 1

(@) Fig. 5.6) Error detection and correction

Note that, this method detects error in more than one position unlike the first method but overhead is more.
In simple parity method, we add 1 additional bit for 7-bit data whreas it is 4 in this method. Also note, by
further increasing this overhead, error in more than one position can also be corrected. However, more than
one-bit error is unlikely for memory read. With overhead for one-bit correction, if there oceurs error in more
than ene-bit positions, then the data needs 1o be read once again from the memory.

18. Can parity code detect even number of errors?
19. What is the full form of CRC?

20. What is the advantage of Hamming code?

21. What is error detection-correction overhead?

. PROBLEM SOLVING WITH MULTIPLE METHODS '

Add two gray coded numbers 0100 and 0111 and express the result in gray code.

Solution Since gray coded numbets are not suitable for arithmetic operations, we have to convert the numbers
to some other form, perform the addition and then convert the result to gray code. We first show how it can be done
through lookup tables. It would require storage of large lookup tables, if the numbers are large in value. Next, we
show the converter-based approach which only needs the implementation of conversion equations.

In Method-1, we take help of first two columns of Table 5.9 and convert these two numbers to deci-
mal, add the decimal numbers and then again use the table to get corresponding gray coded number.
This is shewn in Fig. 5.7a.

In Method-2, we take help of last two columns of Table 5.9 and convert these two numbers to binary,
perform binary addition and then again use the table to get corresponding gray coded number, This is
shown in Fig. 5.7b.

In Method-3, we take belp of gray to binary conversion relation shown in Fig. 5.2b and convert
these two numbers to binary, perform binary addition and then use binary to gray conversion relation
shown in Fig. 5.2a to get corresponding gray coded number. This is shown in Fig. 5.7c.

Number Systems and Codes @

Using Table 5.9
Gray Decimal :
0100 7 ' ' Decimal Gray
0111 +5 12 1010
{(a) Addition using Method-1
Using Table 5.9
Gray Binary
0100 ol Binary Gray
011 +0101 1100 1010
1100 ’
(b) Addition using Method-2
From Fig. 5.2b)
Gray to Binary Conversion: By=G; B;=B:8G; B =B, ® Gy By=B,® Gy Binary
For G3G» Gy Gg = 0100: B;=0 B,=0@=1 Bi=1®0=1 By=1&0=1 o111
For G3G+ GGy =0110: B3 =0 8,=001=1 Bi=1®1=0 Bp=0®1=1 +0101
i 1100
From Fig. 5.2a
Binary to-Gray Conversion: G;=B; G,=B;® B, G, =B, ® B, Go=B,9 B Gray
For B3 By By By = 1100: B3$1_ B,=1®=0 Bi=1®0=1 By=080=0 1010
(c) Addition using Method-3

To convert from binary to decimal numbers, add the weight of each bit position (1, 2, 4, 8, ...) when there is
a 1 in that position. With fractions, the binary weights are % % % ..., and so on. To convert from decimal
to binary, use double dabble for integers and the multiply-by-2 method for fractions.

The base of a number system equals the number of digits it uses. The decimal number system has a base
of 10, while the binary number system has a base of 2. The octal number system has a base of 8. A useful
maodel for counting is the octal odometer. When a display wheel turns from 7 back to 0, it sends a carry to
the next-higher wheel.

Hexadecimal numbers have a base of 16. The model for counting is the hexadecimal odometer, whose
wheels reset and carry beyond F. Hexadecimal numbers are easy to convert mentally into their binary
equivalents. For this reason, people prefer using hexadecimal numbers because they are much shorter than
the corresponding binary numbers.

The ASCIH code is an alphanumeric code widely used for transferring data into and out of a computer.
This 7-bit code is used to represent alphabet letters, numbers, and other symbols. The excess-3 code and
the Gray code are two other codes that are used.

Alogic pulser can temporarily change the state of a node under test. If the original state is low, the logic
pulser drives the node briefly into the high state. If the state is high, the logic pulser drives the node briefly

@ Digital Principles and Applications

into the Jow state. The output impedance of a logic pulser is so low that it can drive almost any normal
node in a logic circuit. When a node is shorted to ground or to the supply voltage, the logic pulser is unable
to change the voltage level; this is a confirmation of the shorted condition.

Parity code, Checksum code, and CRC code have been discussed for error detection.code and Hamming
code for error detection and correction. These techniques are used to ensure that data is correct and has
not been corrupted, either by hardware failures or by noise occurring during transmission or a data read
operation from memory.

base The mumber of digits or basic symbols in
a number system. The decimal system has a
base of 10 because it uses 10 digits. Binary has
a base of 2, octal a base of 8, and hexadecimal
a base of 16.

binary Refers to a number system with a base
of 2, that is, containing two digits.

bit An abbreviated form of binary digit.
Instead of saying that 10110 has five binary
digits, we can say that it has 5 bits.

byte A binary number with 8 bits,

checksum code A error detection code
generating sum of a block of data.

CRC code Cyclic Redundancy Code is a
polynomial key based error detection code.
digit A basic symbol used in a number system,
The decimal system has 10 digits, 0 through
9.

error detection and correction A method
of detection of error in a group of bits and
correction of the same.

hamming code A parity bit based error
detection and correction code.

hexadecimal Refers to number system with a
base of 16. The hexadecimal system has digits
0 through 9, followed by A through F.

logic pulser A troubleshooting device that
generates brief voltage pulses. The typical
logic pulser has a push-button switch that
produces a single pulse for each closure. More
advanced logic pulsers can generate a pulse
train with a specified number of pulses.
nibble An binary number with 4 bits.

octal Refers to a number system with a base
of 8, that is, one that uses 8 digits. Normally,
theseare 0,1,2,3,4, 5,6, and 7.

parity cede An error detection code using one
additional parity bit,

weight Refers to the decimal value of each
digit position of a number. For decimal
numbers, the weights are 1, 10, 100, 1000,
..., working from the decimal point to the left.
For binary numbers the weights are 1, 2, 4, §,
... to the left of the binary point. With octal
numbers, the weights become 1, 8, 64, ... to
the left of the octal point,

011011117

5.2 How many bits are there in 2 bytes?

. PROBLEMS .

5.1 What is the binary number that follows 5.3 How many nibbles are there in each of these:

a. 1001
b. 11110000

Number Systems and Codes

c. 110011110000
d. 1111000011001001

5.4 Give the decimal equivalents for each of the
following binary numbers:
a. 110101 b. 11001.011
5.5 Convert the following binary numbers to thetr
decimal equivalents:

a. 1011 1100 b. 1111 1111
5.6 What is the decimal equivalent of 1000 1100
1011 00117

5.7 A computer has 128K of memory. How many
bytes does this represent?

5.8 Convert the following decimal numbers to
binary numbers: 24, 65, and 106.
5.9 What binary number does decimal 268 stand
for?
5.10 Convert decimal 108.364 to a binary number.
5.11 Calculate the binary equivalent for 5280.

5.12 Convert the following octal numbers to
decimal equivalents:

a. 65 b. 216
c. 4073

5.13 What is the decimal equivalent of octal
3257367

5.14 Convert these decimal pumbers to octal
numbers:
a. 4096 b. 65535

5.15 What is the octal equivalent of decimal
3249877

5.16 Convert the following octal numbers to binary
numbers: 34, 567, 4673.
5.17 Convert the following binary numbers to octal
numbers:
a. 10101111
b. 1101.0110111
c. 1016011.101101

9

5.18 What are the hexadecimal numbers that follow
each of these:
a. ABCD
c. BEEF
5.19 Convert the following hexadecimal numbers
to binary numbers:

b. 7F3F

a. ES b. B4D
c. TAF4
5.20 Convertthesebinary numbers into hexadecimal
numbers:
a. 1000 1100 b. 0011 0111

c. 11110101 0110
5.21 Convert hexadecimal 2F59 to its decimal
equivalent.
5.22 What is the hexadecimal equivalent of decimal
623597
5.23 Give the value of ¥3¥5Y, ¥p in Fig. 5.8 for each
of these:
a. All switches are open
b. Switch 4 is closed
¢. Swiich A is closed
d. Switch F is closed
524 A computer has the following hexadecimal
contents stored at the addresses shown:

Address Hexadecimal contents
2000 D3
2001 AA
2002 96
2003 DE
2004 AA
2005 EB

What are the binary contents at each address?

5.25 Give the ASCII code for each of these:
a7 b. W
¢ f d vy
5.26 Suppose that you type LIST with an ASCII
keyboard. What is the binary output as you
strike each letter.

@ Digital Principles and Applications

+H5V

All resistors b =
are 10 kQ 7430 7430 7430 7430

5.27 In Example 5.15, a computer sends the word 5.29 Here is an excess-3 number:
HELLO to another computer. The characters 0110 1001 1100 0111
are coded in ASCII with an odd-parity bit.
Here is how the word is stored in the memory

What is the decimal equivalent?
of the receiving computer: '

Addre Alph ic Hexadecimal .
% phanummienic exadecima 5.30 What is the Gray code for decimal 8?

2000 H corg(;nts 531 Convert Gray number 1110 to its BCD
2001 E 45 equivalent.
2002 L 4C ,
2003 L 4C
2004 O 4F 5.32 Figure 5.9 shows the decimal-to-BCD encoder
The transmitting computer then sends the word discussed in Sec. 4.6. Answer the following
GOODBYE. Show how this word is stored in questions:
the receiving computer. Use a starting address a. If all switches are open and the logic
of 2000 and include a parity bit. pulser is inactive, what voltage level

does the logic probe indicate?

b. If switch 6 is closed and the logic pulser
is inactive, what does the logic probe
indicate?

5.28 Express decimal 5280 in excess-3 code.

Number Systems and Codes »

5.33

5.34

c. If all switches are open and the logic
pulser is activated, what does the logic
probe do?

The push-button switch of the logic pulser
shown in Fig. 5.9 is pressed. Suppose that the
logic probe is initially dark and remains dark.
Indicate which of the following are possible
sources of trouble:

a. 74147 defective
b. Pin 9 shorted to ground
c. Pin 9 shorted to +5 V
d. Pin 10 shorted to ground
The instruction register shown in Fig. 5.10
on the next page is a logic circuit that stores
a 16-bit number, fi5 ... fy. The first 4 bits,
Iis «.. I, are decoded by a 4 to 16-line
decoder. Determine whether the logic probe
indicates low, high, or blink for each of these
conditions:
a. 115 ... £ = 0000 and logic pulser inac-
tive
b. fis ... [1;= 1000 and logic pulser inac-
tive

All resistors are 1 kQ
l ——

5.35

&)

¢. f15-.. I = 1000 and logic pulser active
d. Iis ... Iy = 1111 and logic pulser active
The logic pulser and logic probe shown in Fig.
5.10 are used to check the pins of the 7404
for stuck states. Suppose pin 8 is stuck in the
high state. Indicate which of the following are
possible sources of trouble:
a. No supply voltage anywhere in circuit
b. Pin 1 of IC2 shorted to ground
¢. Pin 2 of IC4 shorted to the supply volt-
age
d. Pin 3 of ICS shorted to ground
¢. Pin 4 of IC8 shorted to the supply volt-
age

5.36
5.37
538

5.39

11

Find Hamming code of data 11001.

Find Hamming code of data 1000111.

If an error occurs in the 3™ data bit, how will
it be corrected for data of problem 5.37?
How many parity bits are needed to Hamming
code (a) 16-bit data and (b) 24-bit data.

—+5V
16

x, Vee

12

X, 74147

R

R

U O %o

Hf

@ . Digital Principles and Applications

Instruction register

L
-
o

IC

¥

o

|| i

5 0

4

5 IC5
I3

PN [[P vl
=2

=
[

C

™

=]

Ty

C

o
—
~1

Lo

Iy

C

o0

=] e
o0

Number Systems and Codes @

LABORATORY EXPERIMENT

AIM: The aim Qf this expenmem is to gener-
ate and check parity code.

ciuszva-OR of data bits. The even parity makes
the number of 1s ever after the addition ofthe

parity code while odd pamy*mamms itas -

odd.'l‘hepantymﬂiebltsﬁahis even orodd,
is also checked by exchusive-OR of incoming
data. Thus the same circuit can be used both

forl:»anq,rgf:vneratwn:mdcime\:lmlgafien'azpr.-m~.‘= o

priate configuration.

- Apparatus: 5 VDC Power supply,Muin '
ter, and Bread Board :

_ XT[I : 1:.:__"'1
XGE

. 1101

9

Four

18

100011

. 2% =512

. Doublé ‘dabble is a method for ‘converting
fdeclmalnumbemtubmmynmﬁbm -
84,095 .0 o .

290 IR :
Io.ﬁt,2345&md7 :

1. 7{octal} and:7 {decimal) o
12.0123456789A,BCDE,andF

*ﬂmw+ww—,

code is. obtained by ex-

Y
14
i “; EVENINPUT 74180 N

Work element: Verify the truth table of
IC 74180, the 8-bit parity generator/checker.
‘Connect it as showti to use it as parity
generator. Submit 5 different numbers and
check the parity of the coded data, i.e. data
plus parity bit. Configure it in such a way that
- » jthecomes a parity checker and then check the
parity of these 5 numbers. 1C 7486 is a quad 2-
input exclusive-OR gate with pin configuration
similar to 7400 or 7408. Use this to generate
;.. parity and compare the result with 74180,
" Finally, find how 7- and 9-bit long data can be

‘parity coded.

X, X X X, X, X, X, X,

o138 1910 11‘12}13

ODD INPUT

‘X ODD OUTFUT

13. 0011 1160

14. 60

15. ASCII stands for American Standard Code
for Information Interchange, a code used to
represent alphanumeric information.

16. @

17. 0100101

“ 18, No
.19 Cycle Redundancy Code

20. It can detect as well as comect one-bit
erTor.

21. Additional bits to be included with data bits
for this purpose.

Arithmetic Circuits

Add and subtract unsigned binary numbers

Show how numbers are represented in unsigned binary form, sign-magnitude form,
and 2’s complement (signed binary) form

Add and subtract signed binary (2’s complement) numbers

Describe the half-adder, full-adder, and adder-subtractor

Design a fast adder circuit that user parallelism to speed up the respoenses

Describe how an Arithmetic Logic Unit can be operated

Explain the means by which multiplication and division are performed on typical
8-bit microprocessors

+* 4

++ e+

Circuits that can perform binary addition and subtraction are constructed by combining logic gates. These
circuits are used in the design of the arithmetic logic unit (ALU). The electronic circuits are capable of very
fast switching action, and thus an ALU can operate at high clock rates. For instance, the addition of two
numbers can be accomplished in a matter of nanoseconds! This chapter begins with binary addition and
subtraction, then presents two different methods for representing negative numbers. You will see how an
exclusive OR gate is used to construct a half-adder and a full-adder. You will see how to construct an $-bit
adder-subtracter using a popular IC. A technique to design a fast adder is discussed in detail followed by
discussion on a multifunctional device called Arithmetic Logic Unit or ALU. Finally, an outline to perform
binary multiplication and division is also presented.

Arithmetic Circuits @
.6.1 BINARY ADDITION '

Numbers represent physical quantities. Table 6.1 shows
the decimal digits and the corresponding amount of

The Decimal Digits

pebbles. Digit 2 stands for two pebbles (ee), 5 for five Pebbles Symbol
pebbles (seeee) and so on. Addition represents the Nome 0
combining of physical quantities. For instance: . 1
2+3=5 o 2
symbolizes the combining of two pebbles with three .::: i
pebbles to obtain a total of five pebbles. Symbolically, ceose 5
this is expressed ssesee 6
26 + 808 = sos8e (Lol L 1L 7
L2 1222]2] 8
Four Cases to Remember sescesses 9

Computer circuits don’t process decimal numbers; they process binary numbers. Before you can understand
how a computer performs arithmetic, you have to learn how to add binary numbers. Binary addition is the
key to binary subtraction, multiplication, and division. So, let’s begin with the four most basic cases of binary
addition:

0+0=0 (6.1)
0+1=1 (6.2)
140 =1 (6.3)
1+1 =10 (6.4)

Equation (6.1} is obvious; so are Egs. (6.2) and (6.3) because they are identical to decimal addition. The
fourth case, however, may bother you. If so, you don’t understand what Eq. (6.4) represents in the physi-
cal world. Equation (6.4) represents the combining of one pebble and one pebble to obtain a total of two
pebbles:

*+ 8 = o8

Since binary 10 stands for e, the binary equation
1+1=10
makes perfect sense. From now on, remember that numbers, whether binary, decimal, octal, or hexadecimal

are codes for physical amounts. If you’re in doubt about the meaning of a numerical equation, convert the
numbers to pebbles to see if the two sides of the equation are equal.

Subscripts

The foregoing discussion brings up the idea of subscripts. Since we already have discussed four kinds of
numbers (decimal, binary, octal, and hexadecimal), we have four different ways to code physical quantities.
How do we know which code is being used? In other words, how can we tell when 10 is a decimal, binary,
octal, or hexadecimal number?

Most of the time, it’s clear from the discussion which kind of numbers are involved. For instance, if we
have been discussing nothing but binary numbers for page afier page, you can count on the next 10 being

@ Digital Principles and Applications

binary 10, which represents ee in the physical world. On the other hand, if a discussion uses more than one
type of number, it may be helpful to use subscripts for the base as follows:
2 — binary
8 — octal
10 — decimal
16 — hexadecimal

For instance, 11, represents binary 11, 23; stands for octal 23, 45,, for decimal 45, and F4,¢ for hexadeci-
mal F4. With the subscripts in mind, the following equations should make perfect sense:

1+ 1, =10,
Tg + 1z =104
9o+ o =104
Fiet+ lig = 104

Larger Binary Numbers
Column-by-column addition applies to binary as well as decimal numbers. For example, suppose you have
this problem in binary addition:

11100
+ 11010
?

Start by adding the least-significant column to get
11100

+ 11010
0
Next, add the bits in the second column as follows:
11100
+ 11010
o
The third column gives
11100
+ 11010
10
The fourth column results in
Carry > 1

11100
+ 11010

0110

Arithmetic Circuits @

Notice the carry into the firal column; this carry occurs because | + | = 10. As in decimal addition, you
write down the 0 and carry the 1 to the next-higher column.

Finally, the last column gives
Carry > 1
11100
+ 11010

110110
In the last column, 1 +1+1=10+1=11,

8-Bit Arithmetic

That’s all there is to binary addition. If you can remember the four basic rules, you can add column by column
to find the sum of two binary numbers, regardless of how long they may be. In first-generation microcomput-
ers (Apple II, TRS-80, etc.), addition is done on two 8-bit numbers such as

A7AgAsAy Az AlAy
+ B;B.BsB, ByB,B\B,
9

The most-significant bit (MSB) of each number is on the left, and the least-significant bit (LSB) is on the
right. For the first number, 45 is the MSB and A is the LSB. For the second number, B; is the MSB and B
is the LSB. Try to remember the abbreviations MSB and LSB because they are used frequently in computer
discussions.

Add these 8-bit numbers: 0161 0111 and 0011 0101. Then, show the same numbers in hexa-
decimal notation.

Solution This is the problem: = -

D101 0111
+0011 0101
7

If you add the bits m each column as previously discussed, you will obtain

0101 0111
+0011 0101
1000 1100

Many people prefer hexadecimal notation because it’s a faster code to work with. Expressed in hexadecimal numbers,
the foregoing addition is

57
+35
Ci e s s : 8C
Often, the letter H is nsed to signify hexadecimal numbers, so the foregoing addition may be written as

el

3TH
+35H

8CH

Digitaf Principles and Applications

Add these 16-bit numbers: 0000 1111 1010 1100 and 0011 1000 0111 1111. Show the
corresponding hexadecimal and decimal numbers.

Solution Start at the right and add the bits, column by column:

Binary Hexadecimal Decimal

0000 11H1 1010 1100 OFACH 4,012
+001T 1060 Ol 11Uy + 387FH + 14,463
0100 1000 0010 1011 482BH 18,475

(Neote: Remember Appendix 1; it takes most of the work out of conversions between number systems.)

Repeat Example 6.2, showing how a first-generation microcomputer does the addition.

Solution First-generation microcomputers like the Apple Il have an 8-bit microprocessor{a digital IC that performs
binary arithmetic on 8-bit numbers). To add 16-bit numbers, a first-generation microcomputer adds the lower § bits in
one operation and then the upper 8 bits in another operation.

Here is how it works for numbers of the preceding example. The original problem is

Upper bytes Lower bytes
1 1

0000 1111 1010 1100

+ 0011 1000 0111 1111

The microcomputer starts by adding the lower bytes:
1010 1100
+0111 111t
10010 1011

Notice the carry into the final column. The microcomputer will store the lower byte (0010 1011), Then, it will do
another addition of the upper bytes, plus the carry, as follows:

1 ¢ Carry
0000 1111
+0011 1000
0100 1000

The microcomputer then stores the upper byte. To output the total answer. the microcomputer pulls the upper and
lower sums out of its memory to get

0100 1000 0016 1011
which is equivalent to 482BH or 18,475, the same us we found in the preceding example.

1. Write the four rules for binary addition.
2. What kind of number is 179FH?
3. What is the meaning of 11157 Of 1117

Arthmetic Circuits @
. 6.2 BINARY SUBTRACTION .

Let’s begin with four basic cases of binary subtraction:

0-0=0 (6.5)
1-0=1 (6.6)
1-1=0 (6.7)
10-1=1 (6.8)

Equations (6.5) to (6.7) are easy to understand because they are identical to decimal subtraction. The
fourth case will disturb you if you have lost sight of what it really means. Back in the physical world, Eq.
(6.4) represents

" —0=8

Two pebbles minus one pebble equals one pebble.

For larger binary numbers, subtract column by column, the same as you do with decimal numbers. This
means that you sometimes have to borrow from the next-higher column. Here is an example:

1101
-1010
?

Subtract the L’SBs to get

1101
-1010

1

To subtract the bits of the second column, borrow from the next-higher column to obtain

Borrow — 1

1001
-1010

1
In the second column from the right, subtract as follows: 10 -1 = 1, to get

Borrow — 1

1001
—-1010

11
Then subtract the remaining columns:
Botrow — 1

1001
-1010

0011

After you get used to it, binary subtraction is no more difficult than decimal subtraction. In fact, it’s easier
because there are only four basic cases to remember.

Digital Principles and Appfications

Show the binary subtraction of 1254 from 2001.

Solution First, use Appendix ! to convert the numbers as follows:

200 — C8H — 1100 1000
125 - 7DH — 0111 1101

So, here is the probiem:

1100 1000
~0111 1101
?
Column-by-column subfraction gives:
1100 1000
—-0111 1301
0100 101!
In hexadecimal notation, the foregoing appears as
C8H
—7DH
4BH -

4. Write the four rules for binary subtraction.

. 6.3 UNSIGNED BINARY NUMBERS..

In some applications, all data is either positive or negative. When this happens, you can forget about + and
—signs, and concentrate on the magwnitude (absolute value) of numbers. For instance, the smallest 8-bit num-
ber is 0000 (000, and the largest is 1111 1111. Therefore, the total range of 8-bit numbers is

0000 0000 (O0H)

to
Ity 1111 (FFH)

This is equivalent to a decimal 0 to 255. As you can see, we are not including + or — signs with these
decimal numbers.

With 16-bit numbers, the total range is
0000 0000 0000 0000 (0000H)
to
1111 1111 1111 1111 (FFFFH)

which represents the magnitude of all decimal numbers from 0 to 65,535.

Data of the foregoing type is called unsigned binary because all of the bits in a binary number are used
to represent the magnitude of the corresponding decimal number. You can add and subtract unsigned binary

Anithmetic Circuits @

nurnbers, provided certain conditions are satisfied. The following examples will tell you more about unsigned
binary numbers.

Limits

First-generation microcomputers can process only 8 bits at a time. For this reason, there are certain restric-
tions you should be aware of. With 8-bit unsigned arithmetic, all magnitudes must be between 0 and 255.
Therefore, each number being added or subtracted must be between 0 and 255. Also, the answer must fall in

the range of 0 to 255. If any magnitudes are greater than 255, you should use 16-bit arithmetic, which means
operating on the lower 8 bits first, then on the upper 8 bits (see Example 6.3).

Overflow

In 8-bit arithmetic, addition of two unsigned numbers whose sum is greater than 255 causes an overflow, a
carry into the ninth column. Most microprocessors have a logic circuit called a carry flag; this circuit detects
a carry into the ninth column and warns you that the 8-bit answer is invalid (see Example 6.7).

Show how to add 150, and 859 with unsigned 8-bit numbers.

Solution With Appendix !, we obtain §

150 — 96H — 100t 0110
85 — 55H — 0101 0101

Next, we can add these unsigned numbers to get

1001 0110 96H
+0101 0101 +55H
1110 1011 EBH

Again, Appendix 1 gives
o 1110 1011 — EBH — 235

Show how to subtract 85, from 150y with unsigned &-bit numbers.

Solution Use the same binary numbers as in the preceding example, but subtract to get

1001 0119 96H
-0101 0101 —55H
0100 0001 41H

Again, Appendix 1 gives
0100 0001 — 41H — 65

In the two preceding examples, everything was well behaved because both decimal answers
were between 0 and 255. Now, you will see how an overflow can oceur to produce an invalid
8-bit answer.

Show the addition of 1759 and 1185 using unsigned 8-bit numbers.

@ Digital Principles and Applications

Solution

175
+118
293
The answer is greater than 255. Here is what happens when we try to add 8-bit numbers:
Appendix 1 gives

175 - BFH — 1010 1111
18 — 76H — 0111 0110

An 8-bit microprocessor adds like this:

1010 1111 AFH
+0111 0110 + 76H
Overflow — 1 0010 0101 125H

With 8-bit arithmetic, only the lower 8 bits are used. Appendix 1 gives
0010 0101 — 25H — 37

As you sce, the 8-bit answer is wrong. It is true that if you take the overflow inio account, the answer is valid, but
then you no longer are using 8-bit arithmetic. The point is that somebedy (the programmer) has to worry about the
possibility of an overflow and must take steps to cortect the final answer when an overflow occurs, If you smdy as-
sembly-language programming, you will learn more about overflows. and what to do about thers.

In summary, 8-bit arithmetic circuits can process decimal numbers between 0 and 255 only. If there is any chance
of an overflow during an addition, the programmer has to write instructions that loek at the carry flag and use 16-bit
arithmetic to obtain the final answer. This means operating on the lower 8 bits, and then the upper 8 bits and the over-

flow (as done in Example 6.3).

5. What 1s the carry flag in a microprocessor?
6. What is the largest decimal number that can be represented with an 8-bit unsigned binary
number?

. 6.4 SIGN-MAGNITUDE NUMBERS .

What do we do when the data has positive and negative values? The answer is important because
it determines how complicated the arithmetic circuits must be. The negative decimal numbers are
-1, -2, -3, and so on. The magnitude of these numbers is 1, 2, 3, and so forth. One way to code these as bi-
nary numbers is to convert the magnitude to its binary equivalent and prefix the sign. With this approach, the
sequence —1, -2, and -3 becomes 001, -010, and -011. Since everything has to be coded as strings of 0s and
1s, the + and — signs also have to be represented in binary form. For reasons given soon, 0 is used for the +
sign and 1 for the — sign. Therefore, 001, 010, and 011 are coded as 1001, 1010, and 1011.

The foregoing numbers contain a sign bit followed by magnitude bits, Numbers in this form are called
sign-magnitude numbers. For larger decimal numbers, you need more than 4 bits. But the idea is still the
same: the MSB always represents the sign, and the remaining bits always stand for the magnitude. Here are

Arithmetic Circuits @

some examples of converting sign-magnitude numbers:
+7 — 0000 0©111
-16 -5 1001 0000
+25 — 0000 0000 0001 1001
~128 —> 1000 0000 1000 0000

Range of Sign-Magnitude Numbers

As you know, the unsigned 8-bit numbers cover the decimal range of 0 to 255. When you use sign-magnitude
numbers, you reduce the largest magnitude from 255 to 127 because you need to represent both positive and
negative quantities. For instance, the negative numbers are

1000 06001 -1)
to
1111 1111 (-127)
The positive numbers are
0000 0001 +1)
o
0111 1111 (+127)

The largest magnitude is 127, approximately half of what is for unsigned binary numbers. As long as your
input data is in the range of —127 to +127, you can use 8-bit arithmetic. The programmer still must check
sums for an overflow because all 8-bit answers are between —127 and +127.

If the data has magnitudes greater than 127, then 16-bit arithmetic may work. With 16-bit numbers, the
negative numbers are from

100G 0000 0000 0001 -1
to

1111 1111 1111 111l (-32,767)
and the positive numbers are from

4000 0000 0000 0001 (+1)
to

OH1 1111 1111 R11 (+32,767)

Again, you can see that the largest magnitude is approximately half that of unsigned binary numbers. Un-
less you actually need + and — signs to represent your data, you are better off using unsigned binary.

The main advantage of sign-magnitude numbers is their simplicity. Negative numbers are identical to
positive numbers, except for the sign bit. Because of this, you can easily find the magnitude by deleting
the sign bit and converting the remaining bits to their decimal equivalents. Unfortunately, sign-magnitude
numbers have limited use because they require complicated arithmetic circuits, If you don’t have to add or
subtract the data, sign-magnitude numbers are acceptable. For instance, sign-magnitude numbers are often
used in analog-to-digital (A/D)} conversions {explained in a latter chapter).

@ Digital Principles and Applications

7. What is the decimal number range that can be represented with an 8-bit sign-magnitude
binary number?
8. In sign-magnitude form, what is the decimal value of 1000 11017 Of 0000 11017

. 6.5 2'S COMPLEMENT REPRESENTATION '

There is a rather unusual number system that leads to the simplest logic circuits for performing arithmetic.
Known as 2s complement representation, this system dominates microcomputer architecture and program-
ming.

1’s Complement

The I's complement of a binary number is the number X, X X, X
that results when we complement each bit. Figure 6.1
shows how to produce the 1’s complement with log-
ic circuits. Since each bit drives an inverter, the 4-bit
output is the I's complement of the 4-bit input, For in-

stance, if the input is

XXX Xp = 1000
the I’s complement is

X;X,X,Xp =0111

A & X

Inverters produce the 1's
complement.

The same principle applies to binary numbers of any length: complement each bit to obtain the I's comple-
ment. More examples of 1's complements are

1010 — 0101
1110 1100 — 0001 00i!
golr 1111 Q000 0110 — 1100 0000 1111 1001

2’s Complement
The 2s complement is the binary number that results when we add 1 to the I's complement. As a formula:
2's complement = I's complement + |
For mstance, to find the 2's complement of 1011, proceed like this:

1011 — 0100 {1’s complement)
0100 +1=0101 (2°s complement}

Instead of adding 1, you can visualize the next reading on a binary odometer. So, after obtaining the 1’s
complement 0100, ask yourself what comes next on a binary odometer. The answer is 0101.

Arithmetic Circuits @

Here are more examples of the 2's complements:

Number — I's complement — 2's complement
1110 1100 — 0001 0011 — 0001 0100
1000 0001 — 0111 1110 — 0111 t111
0011 0110 — 1100 1001 — 1100 1010

Back to the Odometer

The binary odometer is a marvelous way to understand 2’s complement representation. By examining the
numbers of a binary odometer, we can see how the typical microcomputer represents positive and negative
numbers. With a binary odometer, all bits eventually reset to Os. Some readings before and after a complete
reset look like this:

1000 (-8)
1001 7
1010 (-6)
1011 (-5)
1100 (-4)
1101 (-3)
1110 (-2)
111 (-1)
0000 (0)
0001 (+1)
0010 (+2)
0011 (+3)
0100 (+4)
0101 (+3)
0110 (+6)
o111 (+D)

Binary 1101 is the reading 3 miles before reset, 1110 occurs 2 miles before reset, and 1111 indicates I mile
before reset. Then, 0001 is the reading 1 mile afier reset, 0010 occurs 2 miles after reset, and 0011 indicates
3 miles after reset.

Positive and Negative Numbers

“Before” and “after” are synonymous with “negative” and “positive.” Figure 6.2 illustrates this idea with the
numbser line of basic algebra: 0 marks the origin, positive numbers are on the right, and negative numbers are
on the left. The odometer readings are the binary equivalents of decimal numbers: 1000 is the binary equiva-
lent of —8, 1001 stands for —7, 1010 stands for —6, and so on.

The odometer readings in Fig. 6.2 demonstrate how positive and negative numbers are stored in a typical
microcomputer, Here are two important ideas to notice about these odometer readings. First, the MSB is the
sign bit: 0 represents a + sign, and 1 stands for a — sign. Second, the negative numbers in Fig. 6.2 are the 2's
complements of the positive numbers, as you can see in the following:

@ Digital Principles and Applications

Magnitude Positive Negative
l 0001 1111
2 0010 1110
3 0011 1101
4 0100 1100
5 0101 1011
6 0110 1010
7 0111 1001
8 — 1000

Except for the last entry, the positive and negative numbers are 2’s complements of each other.

1000 1001 1010 1011 1100 1161 1110 1111 0000 0001 0010 6011 0100 0101 0110 0111
8 7 -6 5 4 3 2 1 0 1 42 93 14 45 16 7

Representing decimal numbers as 2’s complements

In other words, you can take the 2's complement of a positive binary number to find the corresponding
negative binary number. For instance:
350011
-3 « 1101
After taking the 2's complement of 0011, we get 1101, which represents —3. The principle also works in
reverse:
-7 - 1001
+7 « 0111

After taking the 2’s complement of 1001, we obtain 0111, which represents +7,

What does the foregoing mean? It means that taking the 2’s complement is equivalent to negation, chang-
ing the sign of the number. Why is this important? Because it’s easy to build a logic circuit that produces the
2’s complement. Whenever this circuit takes the 2’s complement, the output is the negative of the input. This
key idea leads to an incredibly simple arithmetic circuit that can add and subtract.

In summary, here are the things to remember about 2’s complement representation:

L. Positive numbers always have a sign bit of 0, and negative numbers always have a sign bit
of .

2. Positive numbers are stored in sign-magnitude form.

3. Negative numbers are stored as 2’s complements.

4. Taking the 2s complement is equivalent to a sign change.

Converting to and from 2’s Complement Representation

We need a fast way to express numbers in 2's complement representation. Appendix 2 lists ali
8-bit numbers in positive and negative form. You will come to love this Appendix if you have to work a lot
with negative numbers. By reading either the positive or negative cotumn, you can quickly convert from
decimal to the 2's complement representation, or vice versa.

Arithmetic Circuits @

Here are some examples of using Appendix 2 to convert from decimal to 2s complement representation:

+23 — 17H — 0001 0111
—48 - DOH — 1101 0000
~93 — A3H — 1010 0011

Of course, you can use Appendix 2 in reverse. Here are examples of converting from 2’s complement
representation to decimal:

0111 0111 — 77H — +119
1110 1000 — E8H — -24
1001 0100 — 94H — 108

A final point. Look at the last two entries in Appendix 2. As you see, +127 is the largest positive number
in 2’s complement representation, and —128 is the largest negative number. Similarly, in the 4-bit odometer
discussed earlier, +7 was the largest positive number, and -8 was the largest negative number. The largest
negative number has a magnitude that is one greater than the largest positive number. This slight asymmetry
of 2’s complement representation has no particular meaning, but it is something to keep in mind when we
discuss overflows.

A first-generation microcomputer stores 1 byte at each address or memory location, Show
how the following decimal numbers are stored with the use of 2’s complement representation:
+20, 35, +47, -67, -98, +112, and - 125. The first byte starts at address 2000.

Solution With Appendix 2, we have

Address Binary contents Hexadecimal Decimal contents
) contents
2000 0001 0100 T : 420
2001 101 1101 ~ DDH -35
2002 ' goro 11t . 2DH | +47
2003 1011 1101 BDH 67
2004 1001 1110 9EH -98
2005 011 0000 70H +112
2006 1000 0011 83H -125

The computer actually stores binary 0001 0100 at address 2000, Instead of saying 0001 0100, however, we may
prefer to say that it stores 14H. To anyone who knows the hexadecimal code, 14H, means the same thing as 0001
0100, but 14H is much easier to say. To the person on the street who knows only the decimal code, we would say that
+20 is stored at address 2000.

As you see, understanding computer operation requires knowledge of the different codes being used. Get this into
your head, and you are on the way to understanding how computers work.

Express —19,750 in 2s complement representation. Then show how this number is stored
starting at address 2000. Use hexadecimal notation to compress the data.

Solution The number —19,750 is outside the range of Appendix 2, so we have to fall back on Appendix 1. Start by
converting the magnitude to binary form. With Appendix 1, we have

19,750 — 4D26H — 0100 1101 0010 0110

@ Digital Principles and Applications

Now, take the 2’s complement to obtain the negative value:
1011 0010 1181 1001 +1=1011 0010 1101 1010
This means that
~19,750 —~» 1011 0010 1i01 1010
In hexadecimal notation, this is expressed
1011 0010 1101 1010 - B2DAH

The memory of a first-generation microcomputer is organized in bytes. Each address or memory location contains
1 byte. Therefore, a first-generation microcomputer has to break a 16-bit aumber like B2DA into 2 bytes: an upper
byte of B2 and a lower byte of DA, The lower byte is stored at the lower address and the upper byte, at the next-higher
address like this:

Address Binary contents Hexadecimal contents

2000 1101 1010 : - - DA
2001 1011 0010 B2~

The same approach, lower byte first and upper byte second, is used with first-generation microcomputers such as
the Apple I and TRS-80.

LD

9. What is the I's complemem representation of 1101 0_110_? “
10. What is the 2's complement representation of 1101 01107

. 6.6 2’S.COMPLEMENT ARITHMETIC '

Early computers used sign-magnitude numbers for positive and negative values. This led to complicated
arithmetic circuits. Then ait engineer discovered that 2's complement representation could simplify arithme-
tic hardware. (This refers to the electronic, magnetic, and mechanical devices of a computer.) Since then, 2’s
complement representation has become a universal code for processing positive and negative numbers.

Help from the Binary Odometer

Addition and subtraction can be visualized in terms of a binary odometer. When you add a positive number,
this is equivalent to advancing the odometer reading. When you add a negative number, this has the effect of
turning the odometer backward. Likewise, subtraction of a positive number reverses the odometer, but sub-
traction of a negative number advances it. As you read the following discussion of addition and subtraction,
keep the binary odometer in mind because it will help you to understand what’s going on,

Addition

Let us take a look at how binary numbers are added. There are four possible cases: both numbers positive, a
positive number and a smaller negative number, a negative number and a smaller positive number, and both
numbers negative. Let us go through ail four cases for a complete coverage of what happens when a computer
adds numbers.

Arithmetic Circuits @

Case 1 Both positive. Suppose that the numbers are +83 and +16. With Appendix 2, these numbers are
converted as follows:

+83 — 010} 0011
+16 — 0001 0000

Then, here is how the addition appears:

+83 0101 0011
+16 + 0001 0000
99 0110 0011

Nothing unusual happens here. Column-by-column addition produces a binary answer of G110 0011.
Mentally convert this to 63H. Now, look at Appendix 2 to get

63H — 99
This agrees with the decimal sum.
Case 2 Positive and smaller negative. Suppose that the numbers are +125 and —68. With Appendix 2, we
obtain

+125 - 0111 1101
—68 — 1011 1100

The computer will fetch these numbers from its memory and send them to an adding circuit. The numbers
are then added column by column, including the sign bits to get

125 0111 1101
+ (- 68) +1011 1100
57 1 0011 1001 — 0011 1001

With 8-bit arithmetic, you disregard the final carry into the ninth column. The reason is related to the bi-
nary odometer, which ignores final carries. In other words, when the eighth wheel resets, it does not generate
a carry because there is no ninth wheel to receive the carry. You can convert the binary answer to decimal as
follows:

0011 t001 — 39H {mental conversion)
39H — +57 {look in Appendix 2)

Case 3 Positive and larger negative. Let’s use +37 and —115. Appendix 2 gives these 2’s complement
representations:

+37 — 0010 010!

-115 — 1000 1101

Then the addition looks like this:

+37 0010 0101
+(~115) +1000 1101

—78 1011 0010

@ Digital Principles and Applications

Next, verify the binary answer as follows:
1011 0010 — B2H (mental conversion)
B2H — -78 (look in Appendix 2)
Incidentally, mentally converting to hexadecimal before reference to the appendix is an optional step.

Most people find it easier to locate B2H in Appendix 2 than 1011 0610. It only saves a few seconds, but jt
adds up when you have to do a lot of binary-to-decimal conversions.

Case 4 Both negative. Assume that the numbers are —43 and —78. In 2°s compiement representation. the
numbers are

-43 — 1101 0101
~78 = 1011 0010

The addition is

-43 1101 0101
+ (—78) + 1011 0010
~121 1 1000 0111 — 1000 0111

Again, we ignore the final carry because it's meaningless in 8-bit arithmetic. The remaining 8 bits convert
as follows:
1000 0111 — 83H
83H — -121

This agrees with the answer we obtained by direct decimal addition.

Conclusion

We have exhausted the possibilities. In every case, 2's complement addition works. In other words, as long
as positive and negative numbers are expressed in 2’s complement representation, an adding circuit will au-
tomatically produce the correct answer. (This assumes the decimal sum 1s within the —128 to +127 range. If
not, you get an overflow, which we will discuss later.)

Subtraction

The format for subtraction is

Minuend
— Subtrahend
Difference

There are four cases: both numbers positive, a positive number and a smaller negative number, a negative
number and a smaller positive number, and both numbers negative.

The question now is how can we use an adding circuit to do subtraction. By trickery, of course. From
algebra, you already know that adding a negative number is equivalent to subtracting a positive number. Jf
we take the 2's complement of the subtrahend, addition of the complemented subtrahend gives the correct
answer. Remember that the 2’s complement is equivalent to negation. One way to remove all doubt about this
critical idea is to analyze the four cases that can arise during a subtraction.

Arithmetic Cireuits @

Case 1 Both positive. Suppose that the numbers are +83 and +16. In 2’s complement representation, these
numbers appear as

+83 — 0101 0011
+16 — 0001 0000

To subtract +16 from +83, the computer will send the +16 to a 2’s complementer circuit to produce
~16 — 1111 0000
Then it will add +83 and -16 as follows:

83 0101 0011
+(-16) + 1111 0000
67 1 0100 0011 — 0100 0011

The binary answer converts like this:
0100 0011 — 43H
43H — +67
Case 2 Positive and smaller negative. Suppose that the minuend is +68 and the subtrahend is
—27. In 2’s complement representation, these numbers appear as

+68 — 0100 0100
-27 - 1110 0101

The computer sends -27 to a 2's complementer circuit to produce
+27 — 0001 1011
Then it adds +68 and +27 as follows:

+68 0100 0100
+27 + 0001 1011
95 0101 1111

The binary answer converts to decimal as follows:
0101 1111 —» 5FH
5FH — +95
Case 3 Positive and larger negative. Let’s use a minuend of +14 and a subtrahend of ~108. Appendix 2
gives these 2's complement representations:
+14 — 0000 1110
-108 — 1001 0100
The computer produces the 2's complement of —108:
+108 —» 0110 1100
Then it adds the numbers like this:
14 0000 1110
+108 +0110 1100
122 0111 1010

@ Digital Principles and Applications

The binary answer converts to decimal like this:

o111 1010 - 7AH
7AH — +122

Case 4 Both negative. Assume that the numbers are 43 and —78. In 2’s complement representation, the
numbers are
-43 — 1101 0101
-78 — 1011 0010
First, take the 2°s complement of 78 to get
+78 - 0100 1110

Then add to obtain

- 43 1101 0101
+78 + 0100 1110
35 1 0010 0011 —» 0010 0011
Then
0010 0011 — 23H
23H — +35
Overflow

We have covered all cases of addition and subtraction. As shown, 2’s complement arithmetic works and is
the standard method used in microcomputers. In 8-bit arithmetic, the only thing that can go wrong is a sum
outside the range of —128 to +127. When this happens, there is an overflow into the sign bit, causing a sign
change. With the typical microcomputer, the programmer has to write instructions that check for this change
in the sign bit.

Let’s take a look at overflow problems. Assume that both input numbers are in the range of —128 to +127.
If a positive and a negative number are being added, an overflow is impossible because the answer is always
less than the larger of the two numbers being added. Trouble can arise only when the arithmetic circuit adds
two positive numbers or two negative numbers. Then, it is possible for the sum to be outside the range of
—128 to +127. {Subtraction is included in the foregoing discussion because the arithmetic circuit adds the
complemented subtrahend.)

Case 1 Two positive numbers. Suppose that the numbers being added are +100 and +50. The decimal
sum is +150, so an overflow occurs into the MSB position. This overflow forces the sign bit of the answer to
change. Here is how it looks:

100 0110 0100
+ 50 + Q011 0010
150 1001 0110

The sign bit is negative, despite the fact that we added two positive numbers. Therefore, the overflow has
produced an incorrect answer.

Arithmetic Circuits @

Case 2 Two negative numbers. Suppose that the numbers are -85 and -97. Then

-85 1010 1011
+(=97) + 1001 1111
82 1 0100 1010 — 0100 1010

The 8-bit answer is 0100 1010. The sign bit is positive, but we know that the right answer should contain
a negative sign bit because we added two negative numbers.

What to Do with an Overflow

Overflows are a software problem, not a hardware problem. (Soffware means a program of list of instructions
telling the computer what to do.) The programmer must test for an overflow after each addition or subtrac-
tion. A change in the sign bit is easy to detect. All the programmer does is include instructions that compare
the sign bits of the two numbers being added. When these are the same, the sign bit of the answer is compared
to either of the preceding sign bits. If the sign bit is different, more instructions tell the computer to change
the processing to 16-bit arithmetic. You will learn more about overflows, 16-bit arithmetic, and related topics
if you study assembly-language programming.

How would an 8-bit microcomputer process this:

18,357
—12.618

¥

Solution 1t would use double-precision arithmetic, synonymous with 16-bit arithmetic. This arithmetic is used with
16-bit numbers in this form: '
XisXiaXi3X2 X XioXoXs XpXeXsXy X3XoXiXo
Numbers like these have an upper byte Xi5 -.- X3 and a lower byte X7 -- Xp. To perform 16-bit arithmetic, an 8-hit
microcomputer has to operate on each byte separately. The idea is gimilar to Example 6.3, where the lower bytes were
added and then the upper bytes.
Here is how it is done. With-Appendix 1, we have
18,357 — 47B5SH — 0160 0111 1011 0101
12,618 -» 314AH — 0011 0001 0100 1010

The 2’s complement of 12,618 is- _
~12,618 - CEB6H = 1100 1110 1011 0110
The addition is carried out in two steps of 8-bit arithmetic. First, the lower bytes are added:
1011 0101
+ 1011 0110
WX8X7X6X5X4 X3X: X1 Xo
The computer will store X7 ... Xp. The carry X3 is used in the addition of the upper bytes.
Now, the computer adds the upper bytes plus the carry as follows:

1 Xg
0100 0111
+ 1100 1110

1 0001 0110 — 0001 0110

@ Digital Principles and Applications

To obtain the final answer, the two 8-bit answers are combined:
0001 o110 0i{10 1011

Notice that the MSB is 0, which means that the answer is positive. With Appendix 1, we can convert this answer
to decimal form;

0001 0110 06110 1¢11 - 166BH —» +5739

(E)SELF-TEST)

11. What is the standard method for doing binary arithmetic in nearly all microprocessors?
12. How is 2’s complement representation used to perform subtraction?

. 6.7 ARITHMETIC BUILDING BLOCKS '

We are on the verge of seeing a logic circuit that performs 8-bit arithmetic on positive and negative numbers.
But first we need to cover three basic circuits that will be used as building blocks. These building blocks are
the half-adder, the full-adder, and the controller inverter. Once you understand how these work, it is only a
short step to see how it all comes together, that is, how a computer is able to add and subtract binary pumbers
of any length.

Half-Adder

When we add two binary numbers, we start with the least- A CARRY = AB
significant column. This means that we have to add two B 4

bits with the possibility of a carry. The circuit used for this
is called a half-adder. Figure 6.3 shows how to build a half- ‘:D_ SUM — B + 4B
adder. The output of the exclusive—OR gate is called the

SUM, while the output of the AND gate is the CARRY. The Fig. 6.3) Hali-adder

AND gate produces a high output only when both inputs
are high. The exclusive-OR gate produces a high output if

either input, but not both, is high. Table 6.2 shows the
truth table of a half-adder.

When you examine each entry in Table 6.2, you are A B CARRY SUM
struck by the fact that a half-adder performs binary

L 0 0 o 0
addition. 0 1 0)

As you see, the half-adder mimics our brain pro- 1 0 0 1
cesses in adding bits. The only difference is the half- 1 1 1 0

adder is about a million times faster than we are.

Full-Adder

For the higher-order columns, we have to use a full-adder, a logic circuit that can add 3 bits at a time, The
third bit is the carry from a lower column. This implies that we need a logic circuit with three inputs and two
outputs, similar to the full-adder shown in Fig. 6.4a. (Other designs are possible. This one is the simplest.)

Arithmetic Circuits @

Table 6.3 shows the truth table of a full-adder. You can easily check this truth table for its validity. For
instance, CARRY is high in Fig. 6.4a when two or more of the ABC inputs are high; this agrees with the
CARRY column in Table 6.3. Also, when an odd number of high 48C inputs drives the exclusive-OR gate,
it produces a high output; this verifies the SUM column of the truth table.

Full-Adder Truth Table

A C CARRY SUM
0 0 0 0
0 1 0 1
0 0 0 1
G 1 I 0
1 0 0 1
1 1 ! 0
1 0 1 0
1 1 1 1
A B C

AB

c> 0001 1110
otolo|Mlo
1o i D

B
0
0
I
1
0
0
1
1
D@— CARRY Carry = AB + BC + AC

AB
O 00 01 1110

001101
tffr]Jo]1]0

SUM SUM=A®B®C
(a) (b)
(a) Full-adder, {b) Karnaugh map of Table 6.3

When you examine cach entry in Table 6.3, you can see that a full-adder performs binary addition on 3
bits.

From this truth table we get Karnaugh map as shown in Fig. 6.4b that gives following logic equations,
CARRY=4B+BC+AC and SUM=A®B®C
A general representation of full-adder which adds i-th bit 4; and B; of two numbers 4 and B and takes carry
from (i-1)th bit could be
Ci=AB;+BCi +AC ot C;=AB;+(4;+B)Ciy, and S;=4,98,®C;,
where, C; and S; are carry and sum bits generated from the full adder. The second representation of C, has an
interesting meaning. The first term gives, if both 4; and B; are 1 then C; = 1. The second term gives if any of

A; or B;is | and if there is carry from previous stage, i.e. C;; = 1 thenalso ;= 1. That this is the case, we can
verify from full adder truth table and this understanding is useful in design of fast adder in Section 6.9.

@ Digital Principles and Applications

Controlled Inverter

Figure 6.5 shows a controlled inverter. When INVERT is low, it transmits the 8-bit input to the output; when
INVERT is high, it transmits the I’s complement. For instance, if the input number is
A7 Ag=0110 1110
4, Ag A Ay Ay A, A 4

| . |
¥y I

Controlled inverter

' ' g | — INVERT

f [.
e Yy ¥ ¥y N o

a low INVERT produces
Yo ... ¥y=0110 1110
But a high INVERT results in
Y7...¥p=1001 0001

The controlled inverter is important because it is a step in the right direction. During a subtraction, we first
need to take the 2’s complement of the subtrahend. Then we can add the complemented subtrahend to obtain
the answer. With a controlled inverter, we can produce the 1’s complement. There is an easy way to get the
2’s complement, discussed in the next section. So, we now have all the building blocks: half-adder, full-adder,
and controlled inverter,

-
*

€

13. What are the 'i?np'u'ts and duti;ﬂtsr'ofa halfadder? e
14, ‘What are the inputs and outputs of a full-adder? = .~ = © ¢ ST G
15. The SUM output of a full-adder is easily implemented using an exclusive-OR gate. (T or F)

. 6.8 THE ADDER-SUBTRACTER '

We can connect full-adders as shown in Fig. 6.6 to add or subtract binary numbers. The circuit is laid out from
right to left, similar to the way we add binary numbers. Therefore, the least-significant columnn is on the right,
and the most-significant columnn is on the left. The boxes labeled FA are full-adders, (Some adding circuits
use a half-adder instead of a full-adder in the least-significant column.)

The CARRY OUT from each full-adder is the CARRY IN to the next-higher full-adder. The numbers be-
ing processed are 47 ... Ag and By ... By, and the answer is $y -.- §p. With 8-bit arithmetic, the final carry is
ignored for reasons given earlier. With 16-bit arithmetic, the final carty is the carry into the addition of the
upper bytes,

Arithmetic Circuits @

A, B, A, B, A5 B, A, By A3 By 4, B, 4, B, 4, B,
R IR D I I R R
l— M H KA 1 K M M (FA M FA I M H H
CARRY S, S, s, S, S S,
Binary adder-subtracter
Addition

Here is how an addition appears:

ArAAsAs Ay AiAy
+ B;BgBsB, B;B,B By
S5186555; 53555
During an addition, the SUB signal is deliberately kept in the low state. Therefore, the binary number B
... By passes through the controlled inverter with no change. The full-adders then produce the correct output
sum. They do this by adding the bits in each column, passing carries to the next higher column, and so on.
For instance, starting at the LSB, the full-adder adds A,, By, and SUB. This produces a SUM of 5, and a
CARRY OUT to the next-higher full-adder. The next-higher full-adder then adds 4, B}, and the CARRY IN
to preduce S) and a CARRY OUT. A similar addition occurs for each of the remaining full-adders, and the
correct sum appears at the output lines.
For instance, suppose that the numbers being added are +125 and —67. Then, 47 ... 4g = 0111 1101 and
B; ... Bg=1011 1101. This is the problem:

o111 1101
+1011 1101
?
Since SUB = 0 during an addition, the CARRY IN to the least-significant column is 0:

0 « SUB
0111 1101

+1011 1101
?

The first full-adder performs this addition:
0+1+1=0 with a carry of 1
The CARRY OUT of the first full-adder is the CARRY IN to the second full-adder:

1 « Carry
0111 1101

+1011 1101
0

@ Digital Principles and Applications

In the second column
1+0+0=1 withacarryof 0

The carry goes to the third full-adder:

0 « Carmry
0111 1101
+1011 1101

10
In a similar way, the remaining full-adders add their 3 tnput bits until we atrive at the last full-adder:

] « Carry
0111 1101
+10i1 1101

0011 1010
When the CARRY IN to the MSB appears, the full-adder produces
I1+0+1=0 withacarryofli
The addition process ends with a final carry:
0111 1101

+10i1 1101

1 0011 1010
During 8-bit arithmetic, this last carry is ignored as previously discussed; therefore, the answer is

S7 ... 8§,=0011 1010

This answer is equivalent to decimal +58, which is the algebraic sum of the numbers we started with: +125
and —67.

Subtraction

Here is how a subtraction appears:
A7AgAsAy AsArA1Ag
$:56558s 5:5,5,8,
During a subtraction, the SUB signal is deliberately put into the high state. Therefore, the controlled

inverter produces the 1's complement of By ... B,. Furthermore, because SUB is the CARRY IN to the first
full-adder, the circuit processes the data like this:

I « SUB
A AgAsAy AsAx Az Ay
+ B:BsBsB, ByB,BB,
51868554 535,585,
When 45 ... Ay =0, the circuit produces the 2's complement of 87 ... Bgbecause 1 is being added to the I's
complement 85 ... By. When 45 ... 4, does not equal zero, the effect is equivalent to adding 47 ... Ay and the
2’s complement of B; ... B,

Arithmetic Circuits

Here is an example. Suppose that the numbers are +82 and +17. Then 44

By=10001 0001. The controlled inverter produces the I's complement of B, which is 1110 1110. Since SUB

=1 during a subtraction, the circuit performs the following addition

I « SUB

0101 0010
+ 1110 1110
1 0100 0001
For 8-bit arithmetic, the final carry is ignored as previously discussed; therefore, the answer is
7. 53 =0100 0001
Upper Lower
"4, Ag As A, B, B, Bs B, "4, 4, A, 4, B3 52 B, B,
112415 |911012[13 1245 9101213
7486 7486
3 6 8 11
1 |3 |8 |10 |16 (4 7 11 1 |3 |8 110
] 5
+5V — +5V —
7483 13 14 7483 13
12 12
= [i5]2 Je |9
S'.’

S¢ Ss

Sq

started with: +82 and +17

This answer is equivalent to decimal +65, which is the algebraic difference between the numbers we

[15 J2 [6 |9
55 8% 5 %
Two 7483s can add or subtract bytes

Show how to build an 8-bit adder-subtracter with TTL circuits

for subtraction

adder.

Solution The 7483 is a TTL circuit with four full-adders. This means that it can add nibbles. To add bytes, we need

to use two 7483s as shown in Fig. 6.7. The CARRY OUT (pin 14) of the lower 7483 is used as the CARRY IN (pin
13) to the upper 7483. This allows the two 74835 to add 8-bit numbers. Two 7486s form the controlled inverter needed

The 741583, 74283, and 72LS283 are all TTL 4-bit adder ICs. They are pin-for-pin compatible, except that the
2.83 and "LS283 have +F - on pin 16 and GROUND on pin 8. The 74HC283 is the CMOS version of the same 4-bit

The 74181, 74LS181, and 74LS381 are TTL ALUs, and the 74HC381 is the CMOS equivalent. Each is capable of
adding two 4-bit binary numbers as well as performing numerous other logic operations

Ay ="0101 0010 and B,

SUB

@ Digital Principles and Applicafions
.‘6.9 FAST ADDER .

Fast adder is also called parallel adder or carry look ahead adder because that is how it attains high speed
in addition operation. Before we go into that circuit, let’s see what limits the speed of an adder. Consider, the
worst case scenario when two four bit numbers A: 1111 and B: 0001 are added. This generates a carry in the
first stage that propagates to the last stage as shown next.

Carry: 111
A: 1111
B: 0001
10000

Addition such as these (Fig. 6.6} is called serial addition or ripple carry addition. It also reveals from the
adder equation (given in Section 6.8) result of every stage depends on the availability of carry from previous
stage. The minimum delay required for carry generation in each stage is two gate delays, one coming from
AND gates (1% level) and second from OR gate (2™ level). For 32-bit serial addition there will be 32 stages
working in serial. In worst case, it will require 2 x 32 = 64 gate delays to generate the final carry. Though each
gate delay is of nanosecond order, serial addition definitely limits the speed of high speed computing. Paratlel
adder increases the speed by generating the carry in advance (look ahead) and there is no need to wait for the
result from previous stage. This is achieved by following method.

Let us use the second equation for carry generation from previous section, i.e.
Ci=A8;+(4; + B)Cp,

This can be written as, C; = G; + P,C,.;

Where, GJ:A,B{ al'ld szAj+Bj

G; stands for generation of carry and P; stands for propagation of carry in a particular stage depending on
input to that stage. As explained in previous section, if 4,8; = 1, then ith stage will generate a carry, no matter
previous stage generates it or not. And if 4; + B; = 1 then this stage will propagate a carry if available from
previous stage to next stage. Note that, all G; and P; are available after one gate delay once the numbers 4
and B are placed.

Starting from LSB, designated by suffix 0 if we proceed iteratively we get,

Co =Gyt Pp.C, [C.1 will normally be 0 if we are not using it as subtractor or cascading it.]
CL =G+ PL.Gy= Gy + PGy + Po.C_)) = Gy + P1.Gy + Py Py.C 4 [Substituting Cp]
Similarly,
G =Gat Pp.C =G+ Po(Gy + P1.Gy+ P1Py.Cy) [Substituting C]
=Gy + Pr.Gy + PoP.Gy + PyP Py.C
C3 = G3 + P3.00= G + Py(Gy + P1.G| + PoP .Gy + PoPyPy.C)) [Substituting C;]

=Gy + P3Gg + P3P2.Gl + P_';PQP].GO + P3P2P1P0.C4
etc.
The equations look pretty complicated. But do we gain in any way? Note that, these equations can be real-
ized in hardware using multi-input AND and OR gates and in two levels. Now, for each carry whether C, or

(5 we require only two gate delays once the G; and P; are available, We have already seen they are available
after 1 gate delay. Thus paralle! adder (circuit diagram for 2-bit is shown in Fig. 6.8a) generates carry within

Arithmetic Circuifs @

1 +2=3 gate delays. Note that, after the carry is available at any stage there are two more gate delays from
Ex-OR gate to generate the sum bit as we can write $;= G, ® P, ® C, ;.

Thus serial adder in worst case requires at least (2r7 + 2) gate delays for n-bit addition and parallel adder
requires only 3 + 2 = 5 gate delays for that. One can imagine the gain for higher values of n. However, there
is a caution. We cannot increase » indiscriminately for parallel adder as every logic gate has a capacity to
accept at most a certain number of inputs, termed fan-in. This is a characteristic of the logic family to which
the gate belongs. More about this is discussed in Chapter 14. The other disadvantage of parallel adder is in-
creased hardware complexity for large ». In Fig. 6.8b we present functional diagram and pin connections of
a popular fast adder, IC 74283,

A B, 4y B
c,

y 9

Ay—=12

Ay—14

Al———-3

Ay—{5 10— 5,

13— 5,

IC 1 S

B;—{11 74283 s S

BZ—- 15 0

Bl—-—z

BO_"'6 9 —"""'Coul

Cm—l- 7

Ved16)
GNIX(8)

o s, 5
(a) (b}

(a) Logic circuit for 2-bit fast adder, (b) Functional diagram of IC 74283

Now, how do we add two 8-bit numbers using IC 742837 Obviously, we need two such devices and Cyy
of LSB adder will be fed as C;, of MSB unit. This way each individual 4-bit addition is done parallely but
between two ICs carry propagates by rippling. To avoid carry ripple between two ICs and get truly parallel
addition the following approach can be useful. Let each individual 4-bit adder unit generate two additional
outputs Group Carry Generate (G3_g) and Group Carry Propagate (73). They are defined as follows

Giy = 3+ P3Gy + Py PG + P3P P .Gy
Pyg =PyPyP\Py

@ Digital Principles and Applications

so that
Cy =Gy g+ P34 C [From equation of C in previous discussion]

Now, let us see how this is useful in 8-bit parallel addition. For the 4-bit adder adding MSB taking C; as
carry input, we can similarly write

Cr =G4+ P14 G [C3 is equivalent to C_; input for this adder]
where
Gr4 = Gy + P7Gg + P7Pe.Gs + P7 PoPs5.G,y
Pq4 = P1PePsP,
Thus Cr =G4+ Pr4(G3 g+ Py C)) [substituting C;]
or Cr=GratPraGig+ PraPy o Cy

What do we get from above equation? Group carry generation and propagation terms are available from
respective adder blocks (G3_g, Py from LSB and G; 4, P7_4 from MSB) after 3 and 2 gate delays respec-
tively. This comes from the logic equations that define them with G, P; available afier 1 gate delay.

Once these group-carry terms are available, we can generate C; from previous equation by designing a
small Look Ahead Carry (LAC) Generator circuit. This requires a bank of AND gates (here one 2 input and
one 3 input} followed by a multi-input OR gate (here, three input) totaling 2 gate delays. Thus final carry is
available in 3 + 2 = 5 gate delays and this indeed is what we were looking for in parallel addition. In next
section we discuss a versatile IC 74181 that while performing 4-bit addition generates this group carry gen-
eration and propagation terms. LAC generator circuits are also commercially available; IC 74182 can take up
to four pairs of group carry terms from four adder units and generate final carry for 16 bit addition.

Before we go to next section can you answer after how many gate delays the sum bits (S15..-5p) of 16 bit
fast adders will be available?

Show how final carry is generated for a parallel adder when two numbers added are A; 1111
and B: 0001,

Solution First it calculates, G; and P, paraliely.

Gy=11=1G;=10=0, Gy=1.0=0, Gi=1.0=0.
and Po=1+1=1P=1+0=1, Py=1+0=1, P3=1+0=1.
Note that C =0.

Then substituting these in equation of C; we get final carry as
Ci =Gy + P3Gy + P3P2.G| + Py PoP.Gy + P3PoPyPy.Cy
=0+16+1.1.0+LLLI+ 11110
=0+0+0+1+0

=1

LE-TEST

:

16. What is the savings in time in a parallel adder?
17. What is the maximum number of inputs for an OR gate in a 4-bit parallel adder?

Arithmetic Circuits @

6,10 ARITHMETIC LOGIC UNIT

Arithmetic Logic Unit, popularly called ALU is multifunctional device that can perform both arithmetic
and logic function. ALU is an integral part of central processing unit or CPU of a computer. It comes in
various forms with wide range of functionality. Other than normal addition, subtraction it can also perform
increment, decrement operations. As logic unit it performs usual AND, OR, NOT, EX-OR and many other
complex logic functions. It also comes with PRESET and CLEAR options, invoking which all the function
outputs are made 1 and O respectively. Normally, a mode selector input (M) decides whether ALU performs
a logic operation or an arithmetic operation. In each mode different functions are chosen by appropriately
activating a set of selection inputs.

Input 4 Input B

A3 AZ A] AU B3 BZ Bl Bﬂ

192123 2 182022 1
S3—-—-4-3
L 8 |—— M
2 4 IC 74181
5, —ls 7 pe— Cy
Se—6 14 16 1715 1311109

TITITIT e

BCuw GioFsn FsF P Fy
(2)

M=1 M=0

(Logic (Arithmetic Function)
85,858, 5 Functicn} Cp=1{ForC;,=0,add 1t F)
0000 F=4" F=4
0001 F=(4+ By’ F=A+8
0010 F=AB F=A+B8
0011 F=0 F=minus 1
0100 F=(4B)’ F=Aplus (4B
0101 F=B F=(4+ B) plus (4B")
0110 F=A®@BA F = 4 minus B minus 1
o111 F=A4B" F=AB minus 1
1000 F=4"+8 F=Aplus (48)
1001 F={4® B F=A4dplus B
1010 F=5 F=(4+ B plus (48)
1011 F=A4B F=A4RB minus 1
1100 F=1 F=Aplus 4
1101 F=A+B’ F=(4+B)plus 4
1110 F=4+B F={(4+B)plus 4
1111 F=A4 F=Aminus 1

(b}
{(a) Functional representation of ALU IC 74181, (b) Hs truth table

@ Digital Principles and Applications

In this section, we take up one very popular discrete ALU device from TTL family for discussion. IC
74181 is a 4-bit ALU that can generate 16 different kinds of outputs in each mede selected by four selection
inputs 53, 53, Sy and Sy. The functional diagram of this IC with pin numbers and corresponding truth table is
shown in Fig. 6.9(a) and Fig. 6.9(b) respectively. Note that this truth table considers data inputs 4 and B are
active high. A similar but different truth table is obtained if data is considered as active low.

Well, the truth table is pretty exhaustive though one might wonder what could be the utility of functions like
(4+ B)plus 4B’. But a careful observation shows one important function missing, that of a comparator. Is it truly
so? No, it can be obtained in an indirect way. The C,, is activated (active low) by addition as well as subtraction
because subtraction is carried out by 2’s complement addition. Note that, if the result of an arithmetic operation
1s negative it will be available in 2°s complement form. The A = B output is activated when all the function outputs
are 1,i.e Fy ... Fy=1111. Output 4 = B, together with C,,,, can give functions like 4 > B and 4 < B. Note that
A= B is an open collector output; thus when more than 4-bits are to be compared this output of different ALU
devices are wire-ANDed, simply by knotting outputs together to get the final result. To know more about
open collector gates refer to Section 14.5 of Chapter 14.

The outputs Coy, G- and Py are useful when addition and subtraction of more than 4-bits are performed
using more than one IC 74181 as discussed in previous sections.

Logic operations are done bit-wise by making M = | and choosing appropriate select inputs. Note that,
carry is inhibited for A= 1. Let us see how AND operation between two 4-bit numbers 1101 and 0111 is to be
performed. Enter input A3..4g = 1101 and B,..8) = 0111. Make §;..5; = 1011 and of course M = 1 to choose
logic function. The output is shown as F3..Fy = 0011,

For arithmetic operations Af = 0 to be chosen and we have to appropriately place Cj, (active low), if any.
For example, if we want to add decimal numbers 6 with 4 we have to place 0110 for 6 at A and 0100 for 4 at
B. Then with 53..53 = 1001 (from truth table) and Ci;, = 1 (active low) the output generated is F5..F; = 1010
which is decimal equivalent of 10,

(2} Show how A > B output can be generated in IC 74181 ALU. (b) Also show how 4 = B condition can be
checked.

Solution

(a) If A > B, then function 4 minus B will be positive and the result will not be in 2’s complement form and more
importantly will generate a carry. Refer to discussion and examples in Section 6.6 on 2°s complement arithmetic.
The final result for such subtraction is obtained by disregarding the carry. But here by checking output carry
whether active we ¢can conclude if 4 > B.
Thus to check 4 > B put M = 0 (arithmetic operation), 53..5y = 0110 (gives 4 minus B}, Cy, = 0 {C;, = 1 gives 4
minus B minus 1} and check carry is generated, i.e. Coy = 0 (active), which gives 4 > B.

(b) A similar reasoning shows by making Ci, = | in above and checking if Coy = 0 we can verify 4 > B condition.

- Example __ Show how bits of input A shifted to left by one unit appear at output £ in IC 74181.

Solution 'We know shifting to left by one unit is equivalent to multiplication by two. Again multiplication by two can
be achieved by adding the number with itself once. Thus make data input at 4, M = 0 (arithmetic operation), Cip = |
and §3..8p = 1100 (gives 4 plus 4) and we have 4 shifted by 1 unit to left at function output F.

Arithmetic Circuits @

18. What is an ALU?
19. How do you CLEAR all outputs of IC 741817

6.11 BINARY MULTIPLICATION AND DIVISION

Typical 8-bit microprocessors like the 6502 and the 8085 use software multiplication and division. In other
words, multiplication is done with addition instructions and division with subtraction instructions. Therefore,
an adder-subtracter is all that is needed for addition, subtraction, multiplication, and division.

For example, multiplication 1s equivalent to repeated addition. Given a problem such as
Ex4=7?
the first number is called the multiplicand and the second number, the multiplier. Multiplying 8 by 4 is the
same as adding 8 four times:
8+8+8+8=7

One way to multiply 8 by 4 is to program a computer to add 8 until a total of four 8s have been added. This
approach is known as programmed multiplication by repeated addition.

There are other software solutions to multiplication and division that you will learn about if you study
assembly-language programming.

There are ICs available that will multiply two binary numbers. For instance, the 74284 and the 74285 will

produce an 8-bit binary number that is the product of two 4-bit binary numbers. These ICs are very fast, and
the total multiplication time is only about 40 nanoseconds {ns)!

20. Explain how one can db djvision_of ‘binary numbers.

6.12 ARITHMETIC CIRCUITS USING HDL

We first describe a full adder circuit and create a test bench to test it. Please refer to discussion of Section 6.7.
If 4 and B are the binary digits to be added and C is the Carry input then output Sum and Carry (represented
by sm and cr in following Verilog code) is expressed by equations

Sum:sm=4B+BC~+CA4 and Camy: cr=A®B&C

We have used a test bench that generates all possible combinations of 4, B and C by arithmetic addition
and takes less space than test bench described in Chapter 2. The output sum (sm) and carry (cr) for this is
shown in simulation waveform. One can see this verifies truth table of a fuil adder.

@ Digital Principles and Applications 7

module testFullAdder;
reg A;ﬁ,C;
wire sm, cr;
fulladder fal(A,B,C,sm,cr);// Circuit instantiated with fal
initial // simulation begins
begin _ L
{h,B,C) = 3'0000; //Initialization 2=0,B=0,C=0 o
repeat (7) //repeats following statement seven times
#20 {A,B,C}={A,B,C} + 3'b001; //delay of 20 ns and then increment by 1
#20 $finish; // simulation ends after generating 8 combinations of ABC
end //total time of simulation 7x20+20=160 ns
endmodule

module fulladder(A,B,C,sm,cr); 4/ Description of fulladder Circuit
input A,B,C; .
output sm,cr;

assign sm = (ALB) | {B&C) | (C&A);
assign cr = A*B"C;
endmodule
Or%s‘ J I20|ns‘ 4(?ns‘ . i(S(Iliﬂs i |8Qns | |1Q0n§ [!12;0“‘8; 1 |14Pn§ L
testFullAdder.sm / L I\ T
testFullAdder.cr L
testFull Adder. A f
testFullAdder.B / AN /
testFull Adder.C | Y e A S

(: W Show Verilog design of 4-bit ripple carry adder.

Sofution The code is given as follows. The one in the left hand side ensures ripple carry addition while the one in
the right depends on the compiler. Based on censiderations like speed, cost and.other constrainty Verilog compiler
implements a 4-bit ripple carry adder in different manner.

module adderdbit (sum,cout,a,b,cin); //4-bit ripple carry adder
input [3:0] a,b:; //Two 4 bit data to be added '
input cin; //Input carry

output [3:0] sum; //4-bit sum output
output cout; //output carry

wire [2:0] cint; /*internal carry
generated in first three fulladder
fulladder*/
fa0(a(Q],b[0),cin,sum[0],cint[0]);
// instantiates fulladder

to be generated _
/* 4-bit adder, compiler decides
if ripple carry */

module zdderdbit
(sum,cout,a,b,cin);
input [3:01 a,b;

Arithmetic Circuits @

fulladder input cin;
fal{al1],b[1l},cint[0]),sum([l],cint[1])}; output [3:0] sum;

fulladder output cout;
fa2(al[2],b[2],cint{l],sum[2),cint[2]); assign {cout,sum} = a + b + cin;
fulladderx endmodule
fa3(al3],b[3},cint[2],5um{3], cout);

endmodule

module fulladder(A,B,C,sm,cr);
input A,B,C;

output sm,cr;

assign sm = (A&B} | {B&C) | (C&A);
assign cr = A"B"Cy

endmodule

. PROBLEM SOLVING WITH MULTIPLE METHODS .

(: mm Show how a half-adder can be realized.

Solution The half-adder truth table and logic equations are reproduced from Section 6.7 in Fig. 6.10a.

i B CS . _ P D—S
C=A48
¢ o]0 O B
0 1 0 I CS=ABB
I ofo 1 =AB + A'B D_C
1 1 1 0 _ -
@ | (b)
C=AB= 48y . : do_ubl; complement
S=A-B+A'B
= (4B +A'B)” : double complement
=({4-BY-(A'BYY :from Eq. 2.1 ((48Y Ay
= ((,f‘-:—B)-(A:I-B’)’ : ffom Eq.2.2 py l (4BY, }]_
=(A'B'+4B) 1since XX =10 b—y—-{: D:-— s
=(ABY(4BY : from Eg. 2.1 &
= (4+B)(4BY : from Eq. 2.2 (DDJ—
={(ABYAHABYB ' ({ABY B))
= {{ABY A+{4BYBY’ .+ double complement
= (ABYAY-(ABYB)YY : from Eq. 2.1 [»c
(c) (d)

(a) Truth table and logic equation for half-adder, (b) Realization using
AND and exclusive-OR gate, {c) Derivation of AND and exclusive-OR
relation, (d) Realization using only NAND gates

@ Digital Principles and Applications

In Method-1, the logic relations can directly be realized using AND and exclusive-OR gate as
shown in Fig. 6.10b.

In Method-2, we show how it can be realized using only one type of basic gates, say NAND gate.
The derivation is shown in Fig. 6.10c and the realization is shown in Fig. 6.10d,

It is left as an exercise to find how it can be realized using onty NOR gates.
In Method-3, we show how it can be realized using two 4 to 1 multiplexers. We make use of the truth

table to assign data inputs to the multiplexers while 4 and B are used as select inputs. The realization
is shown in Fig. 6.11a.

00
ot
0— 00 0—j 00 10
0— ot | ¢ 101 | s 00 c B0 s 1 -
0—{ 10 1— 10 — ~— e
1=t 11 0= 11 £2—1 B—1 I
A B
[[] | |
A B A. B A A ; _
{a) {b} ' ' (c}_- '

(@) Fig. 6.11 } Realization using (a) 4 to 1 multlplexers, (b) 2to l multsplexers,
{c) Decoder; OR gate -

In Method-4, we show how it can be realized using two 2 to 1 multiplexers. Let the only selected
input to the multiplexers be A.

We note from the equation, if4 =0,C=0 and if4=1,C=8
if4=0,C=8 and ifd=1,C=§8 _
The realization from these is shown in Fig. 6.11b where B is used in the data input.
In Method-5, we show how it can be realized using a 2 to 4 decoder and OR gate. The decoder gen-

erates all the four minterms 4’B’, A'B, AB’ and AB. Carry output is generated directly from 4B. Sum
output is generated OR-ing 4’B and AB’. The realization is shown in Fig. 6.11c.

Numbers represent physical quantities. As long as you know the number code being used, those strange-
looking answers in other number systemns make perfect sense. Subscripts can be used as a reminder of the
base of the number system.

The unsigned 8-bit numbers are from 0000 0000 to 1111 1111, equivalent to decimal 0 to 255. The un-
signed 16-bit numbers are from decimal (to 65,535, Overflows occur when a sum exceeds the range of the
number system. With 8-bit arithmetic, an overflow occurs when the unsigned sum exceeds 255.

Sign-magnitude numbers use the MSB as a sign bit, with 0 for the + sign and 1 for the - sign. The rest
of the bits are for the magnitude of the number. For this reason, 8-bit numbers cover the decimal range of
-127 to +127, while 16-bit numbers cover 32,767 to +32,767.

Arithmetic Circuits @

The 25 complement representation is the most widespread code for positive and negative numbers.
Positive numbers are coded as sign-magnitude numbers, and negative numbers are coded as 2's comple-
ments. The key feature of this number system is that taking the 2's complement of a number is equivalent
to changing its sign. This characteristic allows us to subtract numbers by adding the 2's complement of the
subtrahend. The advantage is simpler arithmetic hardware.

The half-adder has two inputs and two outputs; it adds 2 bits at a time. The full-adder has three inputs
and two outputs; it adds 3 bits at a time. By connecting a controlled inverter and fuil-adders, we can build
an adder-subtracter. This circuit can perform addition, subtraction, muiltiplication, and division.

A fast adder brings parallelism in addition process, more specifically by generating the carry using extra
hardware through a look ahead logic. An Arithmetic Logic Unit is a versatile device, which can generate
many useful arithmetic and logic functions with appropriate selection of inputs. Cascading of these de-
vices is usually possible for working with larger sized numbers.

v arithmetic logic unit A device that can
perform both arithmetic and logic function
based on select inputs.

» full-adder A logic circuit with three inputs
and two outputs. The circuit adds 3 bits at a
time, giving a sum and a carry output.

» half-adder A logic circuit with two inputs and
two outputs. It adds 2 bits at a time, producing
a sum and a carry output.

» hgrdware The electronic, magnetic, and
mechanical devices used in a computer or
digital system.

» LSB lcast-significant bit.

» look ahead carry Carry that need not ripple
from one stage to other and is obtained through
a look ahead logic after the binary numbers are
placed in adder unit; useful in fast addition.

» magnitude The absolute or unsigned value of
a number.

microprocessor A digital IC that combines the
arithmetic and control sections of a computer.
MSB Most-significant bit.

parallel addition A method of binary addition
where carry generation at a particular stage
does not depend on availability of carry from
previous stage.

overflow An unwanted carry that produces an
answer outside the valid range of the numbers
being represented.

ripple carry Carry that ripples from one stage
to other in serial addition.

serial addition A method of binary addition
where carry sequentially propagates from one
stage to next stage.

software A program or programs. The
instructions that tell a computer how to
process the data.

2’y complement The binary number that results
when 1 1s added to the I’s complement.

@ _PROBLEMS)

6.2 Work out each of these binary sums:
a. 0000 1111 +0011 0111
b. 0001 0100+ 0010 1001
c. 0001 1000 1111 0110+
0000 1111 0000 1000

6.1 Give the sum in each of the following:
a 3g+7g="? b. 53 +6g=7?
c. 4t C15="7 d 8t Fie=7

@ Digital Principles and Applications

6.3 Show the binary addition of 7504 and 538 a. FCH . b. 34H
using 16-bit numbers. ¢. 9AH d. B4H

6.4 Subtract the following: 0100 1111 —0000 6.13 Show the 8-bit addition of these decimal
0101. numbers in 2’s complement representation:

6.5 Show this subtraction in binary form: 47, a, +45,+56 b. +89,-34
—2310. C. +67, —98

6.14 Show the 8-bit subtraction of these decimal
numberts in 2’s complement representation:

6.6 Indicate which of the following produces an a. +54, +65 b. +68, 43
overflow with 8-bit unsigned arithmetic: ¢. +16,-38 d. -28,-65
a. 459+ 78;¢ b. 343+ 564
c. CFig+ 674

6.15 Suppose that FD34H is the input to a 16-bit
controlled inverter. What is the inverted output
in hexadecimal notation? In binary?

6.7 Express each of the following in 8-bit sign-
magnitude form:

a. +23 b. +123 " —
c. —56 -d. -107 6.16 Expressed in hexadecimal notation, the two
6.8 Convert each of the following sign-magnitude input numbers in Fig. 6.6 are 7FH and 4DH.
numbers into decimal equivalents: What is the output when SUB is low?
a. 00110110 6.17 The input numbers in Fig. 6.6 are 0001 0010
b. 1010 1110 and 1011 1111. What is the output when SUB
c. 1111 1000 is high?

d. 1000 1100 0111 0101

6.18 Show how two IC 74283s can be connected
to add two 8-bit numbers. Find the worst case

6.9 Express the I's complement of each of the

following in hexadecimal notation: delay.
a. 23H b. 45H 6.19 Show how a parallel adder generates sum and

carry bits while adding two numbers 1001 and

¢. C9H d. FDH .
6.10 What is the 2’s complement of each of these: 1011. What is the final result?
a. 0000 1111 r ..
b. 0101 1010 :
c. 1011 1119 6.20 How 4 < B function is performed in IC
d. 1111 0000 1111 0000 741817
6.11 Use Appendix 2 to convert each of the 6.21 Show how 7 can be subtracted from 13 using
following to 2’s complement representation: IC 74181.
a. +78 o, 23

c. 90 d. —121
6.12 Decode the following numbers into decimal ¢ 32 Describe a program that multiplies 9 x 7 using
values, using Appendix 2: repeated addition.

Arithmetic Circuits

@)

. LABORATORY EXPERIMENT .

AlM: The aim of this experiment is to per-
form addition and subtraction of two 8-bit
data.

Theory: Two’s complement “arithmetic
complements the number to be subtracted and
adds one to it. Then this is added with the other
number to perform subtraction. The addition is
straight forward. IC 7483 is a 4-bit full adder
with carry in input at pin 13. The exclusive-OR |
gate is useful to find complement of a binary =
number.

Upper

Apparatus: 5 VDC Power supply, Multime-
ter, and Bread Board

Work element: Verify the truth table of IC
7483. Connect two 7483 to perform B-bit addi-
tion as shown. The exclusive-OR gate passes
the same data to adder when SUB = 0 and a
complement of the data when SUB = | where
assertion of SUB stands for subtraction. Add
and subtract five pair of numbers and compare
with theoretical resuit.

Lower

"4, A, A A, B, B, B, B,
[, 1,

I
121415 191101113
7486
3 6] 11
1 {3 |8 10 |16 |4 7 11

1[24]5 [9]onafis

7486

O 3 -6 [8 [
113 s s {4 |7 i

+HYV 2 : 1'3+5 v F 1
i2 7483 - - : g m 7483
AT 2 EEREE
5, S5 8 S, S 8 8§ S
1. See Eqs. (6.1) through (6.4). 14. Inputs: A, B, and CARRY IN; outputs:
2. This is the hexadecimal number 179F. SUM and CARRY
3. Binary 1i1; decimal 111 15. T; see Fig. 6.4,
4. See Egs. (6.5) through (6.8). 16. Paratlel adder requires 5 gate delays and
5. It is used to indicate an overflow. serial adder (2n + 2) gate delays for n-bit
6. 255 addition.
7. -127 10 +127 17. Five.
3. -13;+13 18. ALU is short form of Arithmetic Logic
9. 0010 1001 Unit, a digital hardware that can perform
10. 0010 1010 both arithmetic and logic operations.
11. 2’s complement 19. Substitute M= 1 and 53..50 = 0011.
12. Take the complement of the subtrahend 20. It realized only by repeatedly substracting

and add it to the minuend.
. Inputs: 4 and B; outputs: SUM and
CARRY

j—
L8]

one number from the other.

— e

lE

Clocks and Timing Circuits

+ State the purpose of a clock in a digital system and demonstrate an understanding of
basic terms and concepts related to clock waveforms

4+ Discuss the operation of the Schmitt trigger and its applications

+ Recognize the astable and the monostable 555 timer circuits and compare the
behavior of the two circuits

+ Describe the retriggerable and nonretriggerable monostables

The heart of every digital system is the system clock. The system clock provides the heartbeat without which
the system would cease to function. In this chapter we consider the characteristics of a digital clock signal
as well as some typical clock circuits. Schmitt triggers are used to produce nearly ideal digital signals from
otherwise noisy or degraded signals. Propagation delay is the time required for a signal to pass from the
input of a circuit to its output. You will see how to utilize logic gate propagation delay time to construct a
pulse-forming circuit. A monostable is a basic digital timing circuit that is used in a wide variety of timing
applications. We consider a number of different commercially available monostable circuits and examine
some common applications.

7.1 CLOCK WAVEFORMS

Up to this pomnt, we have been considering static digital logic levels, that is, voltage levels that do not change
with time. However, all digital computer systems operate by “stepping through™ a series of logical operations.
The system signals are therefore changing with time: they are dynamic. The concept of a system clock was in-
troduced in Chapter. 1. It is the clock signal that advances the system logic through its sequence of steps. The

Clocks and Timing Circuits @

square wave shown in Fig. 7.1a is a typical clock waveform — f— Clock cycle time

used in a digital system. It should be noted that the clock need l

not be the perfectly symmetrical waveform shown. It could
simply be aseries of positive (or negative) pulses as shown in (a)

Fig. 7.1b. This waveform could of course be considered an | o= Clock cycle time
asymmetrical square wave with a duty cycle other than 50 I
percent. The main requirement is that the clock be perfectly (b)

periodic, and stable.

Notice that each signal in Fig. 7.1 defines a basic timing (@3 _Fig. 7.1) Ideal clock waveforms
interval during which logic operations must be performed.
This basic timing interval is defined as the clock cycle time, and it is equal to one period of the clock wave-
form. Thus all logic elements must complete their transitions in less than one clock cycle time.

Synchronous Operation

Nearly all of the circuits in a digital system (computer) change states in sprchronism with the system clock.
A change of state will either occur as the clock transitions from low to high or as it transitions from high to
low. The low-to-high transition is frequently called the positive transition (PT), as shown in Fig. 7.2. The PT
is given emphasis by drawing a small arrow on the rising edge of the clock waveform. A circuit that changes
state at this time is said to be positive-edge-triggered. The high-to-low transition is called the negative
transition (NT), as shown in Fig. 7.2. The NT is emphasized by drawing a small arrow on the falling edge of
the clock waveform. A circuit that changes state at this time is said to be negative-
edge-triggered. Virtually all circuits in a digital system are either positive-edge-
triggered or negative-edge-triggered, and thus are synchronized with the system PT NT PT NT
clock. There are a few exceptions. For instance, the operation of a push button
(RESET) by a human operator might result in an instant change of state that is
not in synchronism with the clock. This is called an asynchronous operation.

What is the clock cycle time for a system that uses a 500-kHz clock? An 8-MHz clock?

Solution The clock cycle is simply one period of the clock. For the 500-kHz clock,

i
Cycle time = —————= =2
YOI T S0 w107 T
For the 8-MHz clock, :
Cycle time = =125
ycle tme 8)(106 ns
Characteristics

The clock waveform drawn above the time line in Fig. 7.3a is a perfect, ideal clock. What exactly
are the characteristics that make up an ideal clock? First, the clock levels must be absolutely stable.
When the clock is high, the level must hold a steady value of +5 V, as shown between points @ and b
on the time line. When the clock is low, the level must be an unchanging 0 V, as it is between points
b and c. In actual practice, the stability of the clock is much more important than the absolute
value of the voltage level. For instance, it might be perfectly acceptable to have a high level of
+4.8 V instead of +5.0 V, provided it is a steady, unchanging, +4.8 V.

@ Digital Principles and Applications

+5V——--! 3V ----

oV oV —— — e e
I | L
a b ¢ a b C

Time

(a) Ideal waveform (b) Oscilloscope trace

+
= Cn
< <
. '
"IN
L ial
ti:
| '
} 4
2 N
— 1
’)
i 1
¥ 1

Time

Clock waveforms

The second characteristic deals with the time required for the clock levels to change from high to low
or vice versa. The transition of the clock from low to high at point o in Fig. 7.3a is shown by a vertical line
segment. This implies a time of zero; that is, the transition occurs instantaneously—it requires zero time.
The same is true of the transition time from high to low at point & in Fig. 7.3a. Thus an ideal clock has zero
transition time.

Anearly perfect clock waveform might appear on an oscilloscope trace as shown in F ig. 7.3b. At first glance
this would seem to be two horizontal traces composed of line segments. On closer examination, however,
it can be seen that the waveform is exactly like the ideal waveform in Fig. 7.3a if the vertical segments are
removed. The vertical segments might not appear on the oscilloscope trace because the transition times are so
small (nearly zero) and the oscilloscope is not capable of responding quickly enough. The vertical segments
can usually be made visible by either increasing the oscilloscope “intensity,” or by reducing the “sweep
time.”

Figure 7.3c shows a portion of the waveform in Fig. 7.3b expanded by reducing the “sweep time” such
that the transition times are visible. Clearly it requires some time for the waveform to transition from low to
high-—this is defined as the rise time #,. Remember, the time required for transition from high to low is de-
fined as the fail time 74 It is customary to measure the rise and fall times from points on the waveform referred
to as the /0 and 90 percent points. In this case, a 100 percent level change is 5.0 V, so 10 percent of this is 0.5
V and 90 percent is 4.5 V. Thus the rise time is that time required for the waveform to travel from 0.5 up to
4.5 V. Similarly, the fall time is that time required for the waveform to transition from 4.5 down to 0.5 V.

Finally, the third requirement that defines an ideal clock is its frequency stability. The frequency of the
clock should be steady and unchanging over a specified period of time. Short-term stability can be specified
by requiring that the clock frequency (or its peried) not be allowed to vary by more than a given percentage
over a short period of time—say, a few hours. Clock signals with short-term stability can be derived from
straightforward electronic circuits as shown in the following sections.

Long-term stability deals with longer periods of time—perhaps days, months, or years. Clock signals
that have long-term stability are generally derived from rather special circuits placed in a heated enclosure
{usually called an “oven”) in order to guarantee close control of temperature and hence frequency. Such
circuits can provide clock frequencies having stabilities better than a few parts in 10° per day.

Ciocks and Timing Circuits @

Propagation Delay Time

Propagation delay 1, is the time between a PT (or an NT) at the input of % %
S . . . 1 | Any 2
a digital circuit and the resulting change at the output. For all practical LEXX

purposes, the time difference between fifty percent level of the input and
corresponding output waveforms is used to calculate propagation delay.
The box in Fig. 7.4 on the next page represents any TTL logic gate in
the 74LSXX family. Notice that the waveform at the output is delayed
in time from the input waveform, /£, is the delay time when the output v,
is transitioning from low to high. £,y is the delay time when the output
is transitioning from high to low. At temperatures below 75°C, t,4; is
only slightly larger than r,; 5. For the 74LSXX devices, we will simply v,
assume they are equal, and for simplicity let’s define propagation delay =~ -~
as

e forp
.

Propagation delay = ¢, =t 57 = t,yr

The Texas Instruments data book gives a typical value of ¢, = 9 ns for
T4LSXX devices. For comparison, the high-speed CMOS has slightly longer delay times. For example, the
74HC04 inverter has £, = 24 ns, which is typical.

The total propogation delay through a 74HC04 inverter is known to be 24 ns. What is the
maximum clock frequency that can be used with this device?

Solution An alternative way of posing the question is: How fast can the inverter operate? Remember, the circuit
must complete any change of state within one clock cycle time. So,

_) _ Clock ¢ycle time 2 Ip
The maximum clock frequency is then

1
fp - 24)(!0_9 =417 MHz

Fréquency =

Pulse-Forming Circuits

It is sometimes necessary to use a series of narrow pulses in place of the

ACES I I I
rectangular clock waveform. Two such waveforms are shown in Fig.
7.5. The positive pulses occurring at the leading edge of the clock will PTs " ll JL Il
define the PTs, while the negative pulses occurring at the falling edge
will define the NTs. By taking advantage of the propagation delay time NTs “ E H H
through a gate, it becomes a simple matter to change the rectangular
clock into a series of pulses. There are numerous circuits that will change
the clock into a pulse train, and here are two possibilities.

In Fig. 7.6a, the clock (CLK) is applied to a NAND gate and an AND gate at the same time. The output of
the NAND gate (4) is delayed by #,. The output of the AND gate (PT) is high only when both its inputs are
high. This is shown as the shaded region on the waveforms in Fig. 7.6b. The output (PT) is also delayed by
tp through the AND gate, and it appears as a positive pulse. Each output pulse (PT) is delayed by #, from the
leading edge of CLK, and each pulse has a width equal to 7,. Any digital circuit that incorporates the pulse-
forming block in Fig 7.6a is said to be positive-edge-triggered, since it will change states in synchronism

@ Digital Principles and Applications
CLK D— PT CLK PT

CLK CLK

tp —-a-l: 'tp _.JI |
PT —] L NT |
—_—] Ip
(b} (a)
CLK PT CLK NT

with the PT of the clock. The box in Fig. 7.6¢ is a general symbol for a posttive-edge-triggered circuit. The
small triangle inside the box is called a dynamic input indicator, which simply means the circuit is sensitive
to PTs.

In Fig. 7.7a, CLK is applied to a NAND gate and an OR gate simultaneously. The output of the NAND-
gate {4) is delayed by ¢,. The output of the OR gate (NT) is low only when both its inputs are low. This is the
shaded region on the waveforms. The output (NT) is also delayed by 1, through the OR gate, and it appears
as a negative pulse. Each output pulse has a width of 1, and each is delayed by 4, from the falling edge of
CLK. Any digital circuit that incorporates this pulse-forming circuit is said to be negative-edge-triggered
since it will change states in synchronism with the NT of the clock. The box in Fig. 7.7b is a general symbol
for a negative-edge-triggered circuit. The small triangle is the dynamic input indicator, and the bubble shows
that the input is active-low. The small triangle on the output indicates that NT is normally high, and is active
when low. This triangle has the exact same meaning as the bubble. In fact, the IEEE standard uses these
symbols interchangeably. You will see both symbols used in industry and on manufacturers’ data sheets. Just
remember, they both mean the same thing—active low!

It should be obvious that an inverter at the output of the AND gate in Fig. 7.6a will produce a series of
negative pulses that synchronize with the leading edge of CLK. Similarly, an inverter at the output of the OR
gate in Fig. 7.7a will produce a series of positive pulses in synchronization with the falling edge of CLK.
These circuits, or variations of them, are used extensively with edge-triggered flip-flops—the subject of the
next chapter. If you care to look ahead at the flip-flop symbols, you will see the dynamic indicator and the
bubbled dynamic indicator used extensively.

Clocks and Timing Circuits

1, Explain the meaning of positive-edge-triggered and negative-edge-triggered.
2. What is a dynamic input indicator?
3. What is the logic symbol for an input sensitive to NTs?

. 7.2 TTL CLOCK '

A 7404 hexadecimal inverter can be used to construct an excellent TTL-compatible clock, as shown in
Fig. 7.8. This clock circuit is well known and widely used. Two inverters are used to construct a two-stage
amplifier with an overall phase shift of 360° between pins | and 6. Then a portion of the signal at pin 6 is
fed back by means of a crystal to pin 1, and the circuit oscillates at a frequency determined by the crystal.
Since the feedback element is a crystal, the frequency of oscillation is very stable. Here’s how the oscillator
works.

Inverter 1 has a 330-8 feedback resistor (R;) connected from output {pin 2) to input (pin 1). This forms a
current-to-voltage amplifier with a gain of 4, = ¥,/ [; =— R|. In this case, the gain is A, = =330 V/A, where
the negative sign shows 180° of phase shift. For instance, an increase of 1 mA in J;, will cause a negative-
going voltage of 1 mA x 330 =330mV at V.

Inverter 2 is connected exactly as is inverter 1. lts gain is 4; = —R;. The two amplifiers are then ac-coupled
with 0.01-uF capacitor to form an amplifier that has an overall gain of 4 = 4, X A3 = RiR,. Notice that the
overall gain has a positive sign, which shows 360° of phase shift. In this case, 4 = 330 > 330 = 1.09 x 10°
V/A. For instance, an increase of 45 uA at /; wilt result in a positive-going voltage of 5.0 V at pin 6 of inverter
2. Now, if a portion of the signal at pin 6 is fed back to pin 1, it will augment f; (positive feedback) and the
circuit will oscillate.

A series-mode crystal is used as the feedback element to return a portion of the signal at pin 6 to pin 1. The
crystal acts as a series RLC circuit, and at resonance it ideally appears as a low-resistance element with no
phase shift. The feedback signal must therefore be at resonance, and the two inverters in conjunction with the
crystal form an oscillator operating at the crystal resonant frequency.

With the feedback element connected, the overall gain is sufficient to drive each inverter between
saturation and cutoff, and the output signal is a periodic waveform as shown in Fig. 7.8. Typically, the output
clock signal will transition between 0 and +5 V, will have rise and fall times of less than 10 ns, and will be
essentially a square wave. The frequency of this clock signal determined by the crystal, and values between
1 and 20 MHz are common.

Inverter 3 is used as an output buffer amplifier and is capable of driving a load of 330 € in parallel with
100 pF while still providing rise and fall times of less than 10 ns.

A TTL clock circuit as shown in Fig. 7.8 is said to provide a 5-MHz clock frequency with a
stability better than 5 parts per million (ppm) over a 24-h time period. What are the frequency
limits of the clock?

Solution A stability of 5 parts per million means that a 1-MHz clock will have a frequency of 1,000,000 plus or
minus 5 Hz. So, this clock will have a frequency of 5,000,000 plus or minus 25 Hz. Over any 24-h period the clock
frequency will be somewhere between 4,999,975 and 5,000,025 Hz:

@ Digital Principles and Applications

R,=330Q
p
5 6
#2
1
= 7404 Fee
¢ T
1 Clock
output

Simulated load

TTL clock circuit

4. Why must the crystal in Fig. 7.8 be a series mode and not a paraflel mode?
5. Are the 100-pF and 330-Q loads necessary in Fig. 7.87 - N

. 7.3 SCHMITT TRIGGER '

A Schmitt trigger is an electronic circuit that is used to detect whether a voltage has crossed over a given
reference level. It has two stable states and is very useful as a signal-conditioning device. Given a sinusoidal
waveform, a triangular wave, or any other periodic waveform, the Schmitt trigger will produce a rectangular
output that has sharp leading and trailing edges. Such fast rise and fall times are desirable for all digital
circuits.

Figure 7.9 shows the transfer function v
(¥, versus V) for any Schmitt trigger. The
value of V; that causes the output to jump
from low to high is called the positive-
going threshold voltage V.. The value
of V; causing the output to switch from
high to low is called the negative-going
threshold voltage Vy_,

High state

(

[
e —— o

The output voltage is either high or
low. When the output is low, it is neces-
sary to raise the input to slightly more 0 L L v
than Vr, to produce switching action. 0o I Vre
The output will then switch to the high
state and remain there until the input is
reduced to slightly below ¥7 . The output
will then switch back to the low state. The arrows and the dashed lines show the switching action.

Low state |———L——J

Clocks and Timing Circurts @

The difference between the two threshold voltages is known as hysteresis. It is possible to eliminate
hysteresis by circuit design, but a small amount of hysteresis is desirable because it ensures rapid switching
action over a wide temperature range. Hysteresis can also be a very beneficial feature. For instance, it can be
used to provide noise immunity in certain applications (digital modems for example).

The TTL 7414 is a hex Schmitt-trigger inverter. The hex means there are six Schmitt-trigger circuits in one
DIP. In Fig. 7.10a, the standard logic symbol for one of the Schmitt-trigger inverters in a 7414 is shown along
with a typical transfer characteristic. Because of the inversion, the characteristic curve is reversed from that
shown in Fig. 7.9. Locking at the curve in Fig. 7.10b, when the input exceeds 1.7 V, the output will switch to
the low state. When the input falls below §.9 V, the output will switch back to the high state. The switching
action is shown by the arrows and the dashed lines.

The TTL 74132 is a quad 2-input NAND gate that employs Schmitt-trigger with a similar hysteresis
characteristics as described before for 7414. Figure 7.10c¢ shows the standard logic symbol for one Schmitt-
trigger NAND gate.

Q

)

34

|

Input 1

Input 2
(¢}

=

Q‘:
———— -
- —

—
)
S
=]
(R
T
=

=
=)
—
“

(b)

(a) Logic symbol of Schmitt-trigger inverter, (b) 7414 hysteresis characteristics,
and (c) Logic symbol of Schmitt-trigger 2-input NAND gate

A sine wave with a peak of 2 V drives one of the inverters in a 7414. Sketch the output
voltage.

Solution 'When the sinusoid exceeds 1.7 V, the output goes from high to low. The output stays in the low state until
the input sinusoid drops below 0.9 V. Then the output jumps back to the high state. Figure 7.11 shows the input and
output waveforms. This iflustrates the signal-conditioning action of the Schmitt-trigger inverter. It has changed the
sine wave into a rectangular pulse with fast rise and fall times. The same action would occur for any other periodic

waveform.

Noisy Signals

The hysteresis characteristic of a Schmitt trigger is very useful in changing noisy signals, or signals with
slow rise times, into more nearly ideal digital signals. A noisy signal is iltustrated in Fig. 7.12a. Applying this
signal to the input of a 7404 inverter will produce mu/tiple pulses at its output, as shown in Fig. 7.12b. Each
time the input signal crosses the threshold of the 7404, it will respond, and the multiple output transitions are
the result. When used with an edge-triggered circuit, this will produce numerous unwanted PTs and NTs. The

@ Digital Principles and Applications

l 34 Vemeaboooboaaooo e e .

02V-——-bee b B ————
0

V,.
¥ ihresh M“
T HE
0 i 1 o) !
peo
Hi, Iy V vV
e i ! hd
o mb
0 H]..” ?

(b)

()

Schmitt trigger will eliminate these multiple transitions, as shown in Fig. 7.12c. When the input rises above
Vp+, the output will go low. However, the output will not again change state until the input falls below ¥,
Thus, multiple triggering is avoided! A Schmitt trigger is occasionally incorporated in an IC, for instance, the
74121, which is discussed in the next section.

Clocks and Timing Circuits @
6. What is the meaning of hysteresis when applied to a Schmitt trigger?

What is the difference between an inverting and a noninverting Schmitt trigger?
8. Schmitt triggers can be used as simple inverters. What is another good application for a Schmitt
trigger?

. 7.4 555 TIMER—ASTABLE '

The 555 timer is a TTL-compatible integrated circuit (IC) that can be used as an oscillator to provide a clock
waveform. It is basically a switching circuit that has two distinct output levels. With the proper external
components connected, neither of the output levels is stable. As a result, the circuit continuously switches
back and forth between these two unstable states. In other words, the circuit oscillates and the output is a
periodic, rectangular waveform. Since neither output state is stable, this circuit is said to be astable and is
often referred to as a free-running multivibrator or astable multivibrator. The frequency of oscillation as
well as the duty cycle are accurately controlled by two external resistors and a single timing capacitor. The
internal circuit diagram of LM 555 timer is shown in Fig. 7.13(a). Note that the two comparators inside have
two different reference voltages Vo/3 and 2V /3 for comparisons, if Foo/3 is the voltage between pin 1
and 8. Also note how they are connected to + and — input of the comparator. The Set Reset flip-flop sets or
resets the output based on these comparator outputs in its usual operation. If required, it can be separately
reset by asserting pin 4. More about this flip-flop will be discussed in next chapter. In this section, we show
how 555 can be connected to get an astable multivibrator and in next section, we will discuss how it can be
vsed in monostable mode.

™

The logic symbol for an LM3555 timer connected as an oscillator is shown in Fig. 7.13. The timing capacitor
C is charged toward +¥ ¢ through resistors R, and Rp. The charging time ¢ is given as
1 =0.693(Ry+ Rg)C
This is the time during which the output is high as shown in Fig. 7.13.
The timing capacitor C is then discharged toward ground (GND) through the resistor Rp. The discharge
time #; Is given as
1 =0.093RC
This is the time during which the output is low, as shown in Fig. 7.13.
The period 7 of the resulting clock waveform is the sum of ¢ and #,. Thus
T=1+1t=0.693(R,+2Rg)C
The frequency of oscillation is then found as
| 144

T NTY ATe

Determine the frequency of oscillation for the 555 timer in Fig. 7.13, given R4 = Rg= 1 k€2 and
€= 1000 pF.

@ Digital Principies and Applications

h = 0.693 (RA + RB) C

1, = 0.693 RyC
3 7 3 3 o L4
+ Discharge Thresh(l)l:d, Control T (R4 +2Rg) C
™~ /) Rp
Duty le = =
K Ot R, +2R,
+
[T
X ™ SET/RESET Ry
/{ FLIP-FLOP 4 8
2
R
JLMSSs i
SK é ; L L c
Output{ XL, .%2 1 3 1
-~ Trigger Output Reset | L 0.01 uF
1 2 3 4 T +
(2) (b) Logic diagram -
100

P4

AN

N
)

\N

A

: \/\/ \ /\ v
.g (7] 2 () 0\
7 \

@) 0.01 \\ I\ N,

AN
0.001 h N AN
0.1 i 10 100 1k 10k 100k

f - free-running frequency (Hz)

(c) Nomograph
(@ Fiz. 7.13) (a) Internal diagram of LM 555, (b) LM 555 in astable mode, (c) Nomograph

Solution Using the relationship given above, we obtain

f= 14 —5 =480 kHz
[1000 + 2(10003] x 10

The output of the 555 timer when connected this way is a periodic rectangular waveform but not a
square wave. This is because ¢, and 1, are unequal, and the waveform is said to be asymmetrical. A mea-

Clocks and Timing Circuits @

sure of the asymmetry of the waveform can be stated in terms of its duty cycle. Here we define the duty
cycle to be the ratio of £; to the period. : '

Thus

Duty cycle =
Hhth
As defined, the duty cycle is always a number between 0.0 and 1.0 but is often expressed as a percent.
For instance, if the duty cycle is 0.45 (or 45 percent), the signal is at GND level 45 percent of the time and
at high level 55 percent of the time.

ta) Given Rg = 750 £, determine values for R4 and Cin Fig. 7.13 to provide a 1.0-MHz clock that has a duty cycle
of 25 percent.
{(b) What change in the circuit shown in Fig. 7.13 gives duty cycle approximately 50%?

Solution

(a) A 1-MHz clock has a period of 1 ys. A duty cycle of 25 percent requires f; = 0.75 gsand f, = 0.25 ps. Solving
the expression :
Duty cycle = —Rs__
RA + 2RB
for R4 yields '

Re-—R8 __2p=7 2750 1500
" Duty cycle 0.25

Solving #2 = 0.693 RgC for C yields _ :

e _025x10%°
T 0693Rp 0693 x750

(b) Connect a diode across R pointing from pin 7 to 6 s that it conducts while charging capacitor € and make R

= Rp. Then while charging, Rp is bypassed as diode is forward biased but discharging is through Rp as diode

remains reverse biased and does not conduct. Thus we get same charging and discharging current. Neglecting
small voltage drop across forward biased diode we approximately gate 50% duty cycle.

480 pF

The nomogram given in Fig. 7.13b can be used to estimate the free-running frequency to be achieved
with various combinations of external resistors and timing capacitors. For example, the intersection of the
resistance line 10 kQ = (R, + 2Rp) and the capacitance line 1.0 4F gives a free-running frequency of just over
100 Hz. It should be noted that there are definite constraints on timing component values and the frequency
of oscillation, and you should consult the 555 data sheets.

-

(@ASELE-TEST)

9. What is an astable circuit?
10. A 555 timer can be connected to form an oscillator. (T or F)
11. The oscillation frequency in astable 555 is (directly, inversely) proportional to the external
timing capacitor.

@ Digital Principles and Applications
. 7.5 555 TIMER--MONOSTABLE .

With only minimal changes in wiring, the 555 timer discussed in Sec. 7.4 can be changed from a free-running
osciliator (astable} into a switching circuit having one stable state and one quasistable state. The resulting
monostable circuit is widely used in industry for many different timing applications. The normal mode of
operation is to trigger the circuit into its quasistable state, where it will remain for a predetermined length
of time. The circuit will then switch itself back (regenerate) into its stable state, where it will remain until it
receives another input trigger pulse. Since it has only one stable state, the circuit is characterized by the term
monostable multivibrator, or simply monostable.

The standard logic symbol for a monostable is shown in Fig. 7.14a. The input is labeled TRIGGER, and
the output is Q. The complement of the (2 output may also be available at Q. The Input trigger circuit may
be sensitive to either a PT or an NT. in this case, it is negative-edge-triggered. Usually the output at O is low
when the circuil is in its stable state.

A typical set of waveforms showing the proper operation of a monostable circuit is shown in
Fig. 7.14b. In this case, the circuit is sensitive to an NT at the trigger input, and the output is low when the
circuit rests in its stable state. Once triggered, Q goes high and remains high for a predetermined time ¢ and
then switches back to its stable state until another NT appears at the trigger input,

{

1
TRIGGER !
0 0o | [
I

TRIGGER —4

v

1
0

o Q

L

(a) Logic symbol (b) Waveforms

Monostable circuit

A 555 timer wired as a monostable switching circuit (sometimes called a one-shor) is shown in Fig. 7.15
on the next page. In its stable state, the timing capacitor C is completely discharged by means of an internal
transistor connected to C at pin 7. In this mode, the output voltage at pin 3 is at ground potential,

A negative pulse at the trigger input (pin 2) will cause the circuit to switch to its quasistable state. The
output at pin 3 will go high and the discharge transistor at pin 7 will turn off, thus allowing the timing
capacitor to begin charging toward Ve

When the voltage across C'reaches %/; ¥, the circuit will regenerate back to its stable state. The discharge
transistor will again turn on and discharge C to GND, the output will go back to GND, and the circuit will
remain in this state until another pulse arrives at the trigger input. A typical set of waveforms is shown in
Fig. 7.15b,

The output of the monostable can be considered a positive pulse with a width
=11R,C

Take care to note that the input voltage at the trigger input must be held at +¥, and thata negative pulse
should then be applied when it is desired to trigger the circuit into its quasistable or timing mode.

Find the output pulse width for the timer in Fig. 7.15 given R4 = 10 kQ and C = 0.1 uF.

Clocks and Timing Circuits @

+5Vio+I5V

O
| Reset ec | l:l:
| T R, i
] -
i Trigger 4 8 Discharge — + —
Normally o—— 2 7 i
“*an”™ $R1. HHHH "!::!!!! HHHHH
load b
| LM555 6 Threshold 2
! Control 7 3
' Qutput voltage I /] /
; 3 5 - C 4
1 ! y |
N(‘)‘rrnally 0.01 Vee=5V Top trace: input 5 V/DIV
of ™ L uF Time = 0.1 ms/DIV ~ Middie trace: output 5 V/DIV
load FA R,=9.1kQ Bottom trace: capacitor voltage
CA== 0.1 ¥ 2V/DIV
(a) Monostable (b) Monostable waveforms
10 VT
~ 10 A A ¥, A
Q) e / / / /
8 - o VAR,
2 S &
B 0.1 A A EA
44454
o

AW

0.01 // /1 /’
0001 A/

10 ys Ims 100ms 10s
100 us 10 ms s 100 s

(c) Time delay, t = 1.1 R,

LM555 connected as a monostable circuit

Solution The puise width is found as
S = LIR4C) = 11104 x 1077y = 1.1 ms

Find the value of C necessary to change the pulse width in Example 7.7 to 10 ms.

Solution The timing equation can be solved for C as
_ w0
1Ry 11x10*

=0.909 uF

@ Digitat Principles and Applications

The nomograph shown in Fig. 7.15¢ can be used to obtain a quick, if not very accurate, idea of the sizes of
R4 or C required for various pulse-width times. You can quickly check the validity of the results of Example
7.8 by following the R, = 10 kQ line up to the € = 0.1 uF line and noting that pulse-width time is about 1
ms,

Once the circuit is switched into its quasistable state (the output is high), the circuit is immune to any other
signals at its trigger input. That is, the timing cannot be interrupted and the circuit is said to be nonrerri ggerable.
However, the timing can be interrupted by the application of a negative signal at the reset input on pin 4. A
voltage level going from +¥ ¢ to GND at the reset input will cause the timer to immediately switch back to
its stable state with the output low. As a matter of practicality, if the reset function is not used, pin 4 should
be tied to + V¢ to prevent any possibility of false triggering.

b3

(SASELF-TEST)

12. What is a monostable?
13. A 5535 timer can be connected as a one-shot, (T or F) _
14. Is the stable output state of a 555 timer connected in a monostable mode high or low?

. 7.6 MONOSTABLES WITH INPUT LOGIC '

The basic monostable circuit discussed in the previous section provides an output pulse of predetermined
width in response to an input trigger. Logic gates have been added to the inputs of a number of commercially
available monostable circuits to facilitate the use of these circuits as general-purpose delay elements, The
74121 nonretriggerable and the 74123 retriggerable monostables are two such widely used circuits.

The logic inputs on either of these circuits can be used to allow triggering of the device on either a high-
to-low transition (NT) or on a low-to-high transition (PT). Whenever the value of the input logic equation
changes from false to true, the circuit will trigger. Take care to note that a transition from false to true must
occur, and simply holding the input logic equation in the true state will have no effect.

The logic diagram, truth table, and typical waveforms for a 74121 are given in F ig. 7.16. The inputs to the
74121 are A, A;, and B. The trigger input to the monostable appears at the output of the AND gate. Here’s
how the gates work:

1. If B is held high, an NT at either A, or A, will trigger the circuit (see Fig. 7.16¢). This corresponds to
the bottom two entries in the truth table.
2. Ifeither 4, or A,, or both are held low, a PT at B will trigger the circuit (see Fig. 7.16d).

This corresponds to the top two entries in the truth table. A logic equation for the trigger input can be

written as
T=(4,+42)BQ

Note that for T to be true (high), either 4, or 4, must be true—that is, either A, or 4 at the gate input
must be low. Also, since @ is low during the timing cycle (in the quasistable state), it is not possible for a
transition to occur at 7 during this time. The logic equation for 7 must be low if O is low. In other words,
once the monostable has been triggered into its quasistable state, it must time out and switch back to its stable
state before it can be triggered again. This circuit is thus nonretriggerable.

Clocks and Timing Circuits @

Result

o
N
b

Trigger

L
S
— | o

Trigger
§ | H|H Trigger

6 .
e H H | Trigger
o IL ' gg

- 3

A, . . —.
17y Note: Triggering can occur only when (} is H
Az%_@ 74121 (not in timing cycle)

B

L=Low
H = High
X=Don’t care

7 4 = Low to high transition

= ¥ = High to low transition
(a) Logic diagram (b) Truth table

The output pulse width at (is set according to the values of the timing resistor R and capacitor C as
t=0.69RC
For instance, if C = 1 #F and R = 10 k<2, the output pulse width will be 7= 0.69 x 10* % 10% = 6.9 ms.

The 74121 monostable in Fig. 7.16 is connected with R = 1 k€ and C = 10,000 pF. Pins 3 and
4 are tied to GND and a series of positive pulses are applied to pin 5. Describe the expected
waveform at pin 6, assuming that the input pulses are spaced by (a) 10 s and (b) 5 us.

Solution The circuit is connected such that positive pulses applied to pin 5 will trigger it: The output pulse width at
pin 6witl be 1=0.69 x 10* x 103 =69ps. - = K R ‘
@ Ihemonés,tabie will trigger and time out féi"':v'ery_ input pulse appearing at B, as shown in Fig. 7.17a.
(b) Since the monostable is nof retriggerable, it will trigger once and time out for every other input pulse as shown
in Fig. 7.17b.

The logic diagram and truth table for a 74123 retriggerable monostable are given in Fig. 7.18. There are
actually two circuits in each 16-pin DIP, and the pin numbers are given for one of them. The input logic is

@ Digital Principles and Applications

fo—10 ps— —=| 5 s f—

i 1

P | | | LI JLILnn
PR SRR Sp—] e et

1 1

eo—1 LI LT 1 co—1 Lb LT L
— 6.9 s | -+ 6.9 s |
(a) Triggers on every pulse at B {b) Triggers on every other puise at B

simpler than for the 74121, The inputs are A, B, and R, and the truth table summarizes the operation of the
circuit. The first entry in the truth table shows that the circuit will trigger if R and B are both high, and an
NT occurs at A.

The second truth table entry states the circuit will trigger if A is held low, R is held high, and a PT occurs
at B.

In the third truth table entry, if A is low and B is high, 2 PT at R will trigger the circuit.

The last two truth table entries deal with direct reset of the circuit. Irrespective of the values of A or B, if
the R input has an NT, or is held low, the circuit will immediately reset.

The logic equation for the trigger input to the monostable can be written 7= ABR . Notice that the state
of the output Q does not appear in this equation (as it does for the 74121). This means that this circuit will
trigger every time there is a PT at 7. In other words, this is a retriggerable monostable!

The output pulse width at Q for the 74123 is set by the values of the timing resistor R and the capacitor C.
It can be approximated by the equation

t=0.33RC

The waveforms in Fig. 7.19¢ show a series of negative pulses used to trigger the 74123. Notice carefully
that the circuit triggers (0 goes high) at the first high-to-low transition on A , but that the next two negative
pulses on A retrigger the circuit and the timing cycle ¢ does not begin until the very last trigger!

The 74123 in Fig. 7.18 is connected with A at GND, R at +Vce, R = 10 kQ, and C -
10,000 pE. Describe the expected waveform at (2, assuming that a series of positive pulses
are applied at B and the pulses are spaced at (a) 50 us and (b) 10 S,

Solution - The output pulse width will be about
t=033x10*x108=33 s
a. The circuit will trigger and time out with every pulse as shown in Fig, 7.19a.
b. The circuit will trigger with the first pulse and then retrigger with every following pulse. The timing cycle will
be reset with every input pulse, and @ will simply remain high since the circuit will never be allowed to time out
(see Fig 7.19b). If the pulses at B are stopped, 0 will be allowed to timeé out and will go low 33 us after the last

pulse at B.

Clocks and Timing Circuits @

Ve

L

e T

—_

5
i6
17

R
C
14‘_’(—}15 :O'SSI‘EC
3 i| B|R o
al ” 0 V| & | B | Trigger
4 p (72)
2 74123 14 L| 4| H| Trigger
o
B [7] L| | Y | Trigger H=High
L=Low
3 X| X | L |Reset X=Don’tcare
T X! x| ¢ | Reset # = Low to high transition
R + = High to low transition
{a) Logic diagram (b} Truth table
=< 1
A | | |
0 i 1
51— |
0 i i
71— :
Ro !
1 : :
0, | =
() Waveforms
74123
f+—50 s—{
| S— S | | E—
}-—r—-{ E-—r—-{ i-—z—-l i e
1 4
R = e, L
—] Bps | —=| 33 us fe—
(a) (b)

. The 74121 is a (retriggerable, nonretriggerable) monostable.
. The input logic used with a 74121 utilizes a Schmitt trigger. (TorF)
. The output pulse width of a 74121 is RC multiplied by

@ Digital Principles and Applications
. 7.7 PULSE-FORMING CIRCUITS .

The monostable circuits discussed in the previous sections have pulse-width times that are predictable to
around 10 percent. As such, they do not represent precise timing circuits, but they do offer good short-term
stability and are useful in numerous timing applications.

One such application involves the production of a pulse that occurs after a given event with a predictable
time delay. For instance, suppose that you are required to generate a l-ms pulse exactly 2 ms after the
operation of a push-button switch. Look at the waveforms in F ig. 7.20b. If the operation of the switch occurs
when the waveform labeled SWITCH goes high, the desired pulse is shown as OUTPUT. In this case, the
delay time 1, will be set to 2 ms, and the time of the pulse width 7, will be | ms,

The two monostables in the 74123 shown in Fig. 7.20a are connected to provide a defayed pulse. The first
circuit provides the delay time as 1y =0.33R; x C|, while the second circuit provides the output pulse width as
f; = 0.33R, x C;. The PT at the INPUT triggers the first circuit into its quasistable state, and its output at Q,
goes low. After timing out 1, Q, goes high, and this transition triggers the second circuit into its quasistable
state. The OUTPUT thus goes high until the second circuit times out f7, and then it returns low.

The input to the circuit in Fig. 7.20a is changed to a 100-kHz square wave. It is desired to
produce a 1-us pulse 2 ys after every positive transition of the input as shown in Fig. 7.21.
Find the proper timing capacitor values, given that both timing resistors are set at 500 Q.

Solution The capacitor value for the pulse width is found using ¢ =10.33 RC. Thus:

1076
c=_1Y =6000pF
033%500

The pulse delay capacitor is twice this value, or 0.012 HE.

Glitches

Whenever two or more signals at the inputs of a gate arc undergoing changes at the same time, an undesired
signal may appear at the gate output—this undesired signal is called a glitch. For example, in Fig. 7.22a, the
gate output at X' should be low except during the time when 4 =8 = C = | as shown. However, there is the
possibility of a glitch appearing at the output at two different times. At time 7}, if C happens to go high before
4 and B go low, a narrow positive spike will appear at the gate output—a glitch! Similarly, a glitch could
occur at time T3 if B happens to go high before A goes low.

A glitch is an unwanted signal generated usually because of different propagation delay times through
different signal paths, and they generally cause random errors to occur in a digital system. They are to be
avoided at all costs, and a logic circuit designer must take them into account. One method of avoiding glitches
in the instance shown in Fig. 7.22a is to use a strobe pulse.

It is a simple matter to use a pulse delay circuit such as the one shown in F ig. 7.20 to generate a strobe pulse.
Consider using the waveform 4 in F ig. 7.22a as the input to the pulse delay circuit, and set the monostable
times to generate a strobe pulse at the midpoint of the positive half cycle of 4, as shown in Fig. 7.22b. If the
inputs to the AND gate are now 4, B, C, and the strobe pulse, the output will occur only when 4 =B=C=1,
and a strobe pulse occurs. The glitches are completely eliminated!

An interesting variation of the pulse delay circuit in Fig. 7.20 is shown in F ig. 7.23a. Here, we have simply
connected the ¢ output of the second circuit back to the input of the first circuit. This is a form of positive

Clocks and Timing Circurts @

+VCC +VCC
¢, R, , R,
14"_‘ |i5 6’—‘ 7
3
1 o8 9 0 = QUTPUT
[—*’_ r (172) [—) (1/2)
?INPUT 2 D 74123 | = {10 T74123_
R R

(a) A 74123 with DIP pin numbers

1
SWITCH 0—-J
o !

0

1
1 b

OUTPUT

Delayed pulse generator

1
100 kHz INPUT
1
ourPUT
4 1T LT
T
4 B o
o HL g ™M
¢ c.__ T L smos— c T
X bt .
T, T, X _

(a) Glitches at T} and T,

@ Digital Principles and Applications

feedback. As a result, the circuit will oscillate—it becomes astable and generates a rectangular waveform as
shown in Fig. 7.23. Here’s how it works. The first circuit triggers into its quasistable state. When it times
out ¢, the positive transition at Q; will trigger the second circuit. When it times out f,, the positive transition
at 0, will retrigger the first circuit and the cycle will repeat.

e e
. =R R
C, 1 c, SN
14l—) 15 6’_¢ 7
5
1 & 9 O, — QUTPUT
A)T (1/2) —)T (1/2)
= [2 74123_ 1 = [1o 74123_ |12
1P 0,
R R

(a) Two monostable circuits connected to form an astable free-running oscillator

O

L L

OUTPUT =0, (1)
oty e 1
(b) Waveforms
BT

Independent adjustment of high and low levels of the output waveform is possible by setting the delay
times of each individual monostable. Take care to note that since each circui: is edge-triggered, if a transition
is missed by either circuit, oscillation will cease!

(.

18. What is a glitch?
19. What is a strobe pulse?

. PROBLEM SOLVING WITH MULTIPLE METHODS .

Design a 100 kHz pulse generator with 40 percent duty cycle.

Clocks and Timing Circuits @

Solution . We can use 555 timer working in astable mode to generate this. Also, we can use monostable circuits
74121 or 74123 afndposnlve feedback for this.

‘ Tlme period, T = — sec.= 10 us
6

If ¢ are ¢ are thc times within T, dunng which pulse remain LOW and HIGH respectwely

I
Duty cycle = =— =04
y ty+ity T
Thus, f =04x10=4us

ty=T-1;,=10-4=6pus

in Method-1, we show the calculation required for 555 based pulse generator that uses a circuit as
shown in Fig.7.13a.

t = 0693 RpC
Iy = 0.693 (RA + RB)C
A s . ot R,ri' Rg' RA 6
. . e I sl ——] 4 —— IR — Th y =
Taking ratio, _ 1w R, 1 Ry 4 us, Rp=2R,
If we choose, - RA = IOOOchenRg 2000
Substituting this in say, tL calculanon 4x 107 =0.693 x 2000 x C
or,: : SR C =29nF

In Method-2, we shoxgv the calculanon required for 74123 based pulse generator that uses a circuit
as shown in Flg 1.23a.

: f'_:L'—o BRC, =4 pis
o - o TH"033R2C2-—6[JS
Select say C; = Cy = O = 10F, Then, R, = 12k and R, = 18kQ

in Method:3, - we show the calculamm requlred for 74121 based pulse generatcr that uses a circuit
similar to Fig.7.23a where remggerable 74123 is replaced by non-retriggerable 74121, From Section
7.6,

_ ' tL = 069 RIC] =4[.£S
.tH i“.0.69_=RzC2 =6 s
Select say C; = C; = C =1 aF. Then R, =58 kQ and R, = 8.7kQ

A system clock signal is a periodic waveform (usually a square wave) that has stable high and low levels,
very short rise and fall times; and good frequency stability. A circuit widely used to generate a good
stable, TTL-compatible clock waveforfm is the crystal-controlled circuit shown in Fig. 7.8. -
A Schmitt trigger is a switching circuit having two input threshold voltage levels. It exhibits hysteresis,
and is useful in cleaning up noisy- mgnais

@ Digital Principles and Applications

The 555 timer is a digital timing circuit that can be connected as either a monostable or an astable circuit,
It is widely used in a number of different applications. The 74121 and 74123 monostable circuits both have
logic circuits at their inputs that increase the number of possible applications.

A pulse delay circuit, and a free-running astable with adjustable duty cycle are only a few of the many
circuits that can be construeted with the use of basic monostable ¢ircuits..

» gstable Having two output states, neither of
which is stable.

* asynchronous Referring to random events,
not coordinated closely with a system clock.

* clock A periodic waveform (usually a square
wave) that is used as a synchronizing signal in
a digital system.

* clock cycle time The time period of a clock
signal,

= clock stability A measure of the frequency
stability of a waveform; usually given in parts
per million (ppm).

= contact bounce Opening and closing of a set of
contacts as a result of the mechanical bounce
that occurs when the device is switched.

* dynamic input indicator A small triangle used
on an input signal line to indicate sensitivity
to signal transitions—edge triggering,

= fall time The time required for a signal to
transition from 90 percent of its maximum
value down to 10 percent of its maximum.

= glitch Very narrow positive or negative pulse
that appears as an unwanted signal.

" monostable A circuit that has two output
states, only one of which is stable.

= NT Negative transition.

negative-edge trigger An input sensitive to
high-to-low signal transitions.

one-shot Another term for a monostable
circuit.

PT Positive transition.

positive-edge trigger An input sensitive to
low-to-high signal transitions.

propagation delay time The time required for
a signal to propagate through a circuit, input
to output.

rise time The time required for a signal to
transition from 10 percent of its maximum
value up to 90 percent of its maximum.
Schmitt trigger A bistable circuit used to
produce a rectangular output waveform.

TTL clock A circuit that generates a clock
waveform that is compatible with standard
TTL logic circuits.

10 percent peint A point on a rising or falling
waveform that is equal to 0.1 times its highest

- value,

90 percent point A point on a rising or falling
waveform that is equal to 0.9 times its highest
value.

555 timer A digital timing circuit that can be
connected as either an astable or a monostable
circuit.

@_PROBLEMS | D

(9§ Section 7.1) a. 10 MHz

c. 750 kHz
7.1 Calculate the clock cycle time for a system that 7.2 What is the clock frequency if the clock cycle
uses a clock that has a frequency of:

time 1s 250 ns?

b. 6 MHz

Clocks and Timing Circuits

7.3 What is the maximum clock frequency that can
be used with a logic gate having a propagation
delay of 75 ns?

7.4 You are selecting logic gates that will be
used in a systemn that has a clock frequency
of § MHz. What is the maximum allowable
propagation delay?

7.5 What would be the 10 and 90 percent points
on the waveform in Fig. 7.3c if the amplitude
goes from 0 to +4.5 V?

7.6 Find the upper and lower frequency limits of
a 5-MHz clock signal that has a stability of 10
ppm.

7.7 ATTL clock uses a series-mode crystal having
a resonant frequency of 3.5 MHz. The circuit
provides a 24-h stability of 8 ppm. Calculate
the oscillator frequency limits,

7.8 The TTL clock shown in Fig. 7.8 uses a crystal
that has frequency of 7.5 MHz. Draw the clock
output waveform if + e is set at +5 V. What
is the stability in ppm if the upper limit on the
clock frequency is 7,499,900 Hz?

7.9 The NAND gate in Example 7.2 has a
propagation delay of 50 ns, and 4 is a 15-MHz
clock. Make a careful sketch of the waveform
at the ¥ output. Assume that B is always high.
(Hint: Be sure to consider the propagation
delay time.)

7.10 Draw the input and output waveforms for the
Schmitt trigger in Fig. 7.10, assuming that the
input voltage is V'= 3.0 cos 1000+

7.11 Draw carefully the waveforms at points 4, B,
and C in Fig. 7.24.

2-MHz y E B
51ne wave 1
oscillator

1/6-7414 Dﬂ C
(2.5 V peak)

7.12

7.16

7.17

7.18

7.19

7.21

7.22

723

7.24

)

Draw the transfer curve for a Schmitt trigger
if Vre =+1.0V, Fr.=-1.0 V, high state = +5
Vdc, and low state = 0 Vdec.

Draw the output voltage for the Schmitt trigger
in Prob. 7.12 if ¥; =2 sin wt V.

Determine the frequency of oscillation for
the 555 timer in Fig. 7.13, given R4y = Rp =
47 kQ and C = 1000 pF. Calculate the values
of 71 and ¢;, and carefully sketch the output
waveform.

Determine the frequency of oscillation for the
555 timer in Fig. 7.13, given R4 = 5000 3, R
= 7500 £, and C = 1500 pF. Calculate values
for 1 and r2, and carefully skeich the output
waveform.

Use the nomogram in Fig. 7.13b to find (R4
+ 2Rp), given C = 0.1 yF and that the desired
frequency is 1 kHz. Check the results by using
the formula given for the frequency.
Calculate the duty cycle for the circuit in Prob.
7.13. For Prob. 7.14.

Derive the expression

Duty cycle = Rp/(R4 + 2Rp)
It is desired to have a duty cycle of 25 percent

for the circuit in Prob. 7.15. Find the correct
values for the two resistors,

Calculate the output pulse width for the timer
in Fig. 7.15 for a 4,7-k Q resistor and a 1.5-uF
capacitor.

Calculate the output pulse width for the circuit
in Problem 7.20, assuming that the resistor is
halved.

Calculate the output pulse width for the circuit
in Problem 7.20, assuming that the capacitor
is doubled.

Find the capacitor value necessary to generate
a 15-ms pulse width for the monostable in Fig.
7.15, given R; = 100 kQ.

A 500-Hz square wave is used as the trigger
input for the circuit described in Example 7.7.

@

7.28

729

7.30

7.31

7.32

Digital Principles and Applications

Make a careful sketch of the input and output
waveforms (similar to those in Fig. 7.15b).
Repeat Prob. 7.24, assuming that the trigger
input is changed to a 1-kHz square wave.

In the 74121 in Fig. 7.16, R=47kQ and C =

10,000 pF. Calculate the output pulse width.
Redraw the 74121 logic diagram in Fig. 7.16a
and show how to connect the circuit such that
it will trigger on the positive transitions of
a square wave, For R = 51 k{2, determine a
value of C such that the output pulse will have
a width of 750 us.

Repeat Prob. 7.27, but make the circuit trigger
on negative transitions of the square wave,
Using the circuit described in Prob. 7.27,
make a careful sketch of the input and output
waveforms, assuming the input square wave
has a frequency of:

a. 1 kHz b. SkHz

In the 74123 in Fig. 7.19,R=47kQand C =
10,000 pF. Calculate the output pulse width.
Redraw the 74123 logic circuit shown in Fig.
7.18 and show how to connect the circuit such
that it will trigger on positive transitions of a
square wave. Given R = 51 kQ, determine a
value of C such that the output pulse will have
a width of 750 ys.

Repeat Problem 7.31, but make the circuit
trigger on negative transitions of the square
wave.

7.33

7.34

7.35

7.36

7.37

Using the circuit described in Prob. 7.31,
make a careful sketch of the input and output
waveforms if the input square wave has a
frequency of:

a. 1 kHz b. 5kHz

The input to the circuit in Fig. 7.20 is a 250-
kHz square wave. Determine the proper
timing capacitor values to generate a string of
positive-going, 0.1-us pulses, delayed by 2.0
s from the rising edges of the input square
wave. Assume R} = Ry =1 kQ.
Draw the waveforms, input and output, for
the circuit in Fig. 7.20, given that both timing
resistors are 470 Q, C; = 0.1 yF, C> =0.01 uF,
and the input waveform has a frequency of 20
kHz.
Show how to use the circuit in Fig. 7.20 to
generate a 0.2-ps strobe pulse centered on the
positive half cycle of a 200-kHz square wave
(similar to Fig. 7.22b). Draw the complete
circuit and calculate all timing resistor and
capacitor values. Assume R) = Ry = L k€.
Calculate values for the timing resistors and
capacitors in Fig, 7.23 to generate a clock
waveform that has:

a. A frequency of 100 kHz and a duty cycle

of 25 percent
b. A frequency of 500 kHz and a duty cycle
of 50 percent

. LABORATORY EXPERIMENT '

Refer to Fig. 7.23a. 74123 essentially is a mo-

AlIM: The aim of this experiment is to imple-
ment a 100 kHz pulse generator with 40 per-
cent duty cycle:

Theory: - Refer to Fig. 7.13b. The 555 based
pulse generator follows the following two rela-
tions.

1, = 0.693 RyC
1= 0.693(Ry + Rp)C

nostable and can be used in positive feedback.
It follows the relation

1, =033 R,y
ty =033 BhG
Apparatus: 5 VDC Power supply, Multime-

ter, Bread Board, and Oscilloscope.

Clocks and Timing Circuits

oL]’

oo Ve

0, 5 ourpur

74123__ 112

Work element: Study the working of’ IC

555 and 74123, and understand the different -

input outputs. From above relations, calculate
the resistance and capacitance values. See the

waveform in oscilloscope. Calculate duty cy- -

1. Aninput is sensitive to PTs; and the circuit’
output changes ‘synchronously with PTs. -
The circuit output changes in synchromsm o

with NTs.

2. Tt means that a circuit m;mt iS sensmve to-' S

PTs. (See Fig. 7.6b.)

3. The logic symbol for an. mput semsitive to

NTs is a bubble in front of a dynamlc input
indicator. (See Fig: 7.7b.) '

4. A series mode offers low impedance

at resonance, thus - providing positive
feedback for oscillation. A parallel mode
offers high impedance at resonance, and
thus provides insufficient feedback to
produce oscitlation.

5. Unnecessary. They stmply s1mu}ate a Ioad
condition.

6. Tt means that the circuit has two input

threshold ~ voltage - levels—an upper

thireshold and a lower threshold. "By
contrast, a simple inverter has only asingle
threshold voltage level.

7. Noninverting: the input and output are
both high (or both low) at the same time

clc from the oscilloscope reading and compare
- with theoretical value. Conduct similar exer-

cise for 74123 based circuit as shown. Repeat
the experiment with other combinations of re-

- sistance and capacitance values.

* (no phase shift). Inverting: 180° phase shift

1o
1L
12.

13.
14.
15.
6.
17.

18:

19.:

betveen input and output.

Schaiitt triggers can be used to clean up a
noisy: signal or to change a signal having
a slow rise time into one: havmg a fast risc
time.

A circuit has two output states neither of
which is stable.

True -

Inversely

A circuit has two output states, one of
which is stable.

True

The stable state is low.

Nonretriggerable

True B

0.69

Glitches are the unwanted pulses appearing
at the -output of a gate when two or more
inputs change state simultaneously.

A strobe pulse is a pulse timed to eliminate
glitches.

oo . -

Flip-Flops

4+ Describe the operation of the basic RS flip-flop and explain the purpose of the
additional input on the gated (clocked) RS flip-flop

Show the truth table for the edge-triggered. RS flip-flop, edge-triggered D flip-flop,
and edge-triggered JK flip-flop

+

4+ Discuss some of the timing problems related to flip-flops

+ Draw a diagram of a JK master-slave flip-flop and describe its operation

4+ State the cause of contact bounce and describe a solution for this problem

+ Describe characteristic equations of Flip-Flops and analysis techniques of sequential
circuit

+ Describe excitation table of Flip-Flops and explain conversion of Flip-Flops as synthesis
example

The outputs of the digital circuits considered previously are dependent entirely on their inputs. That is, if
an input changes state, output may also change state. However, there are requirements for a digital device
or circuit whose output will remain unchanged, once set, even if there is a change in input level(s). Such
a device could be used to store a binary number. A flip-flop is one such circuit, and the characteristics of
the most common types of flip-flops used in digital systems are considered in this chapter. Flip-flops are
used in the construction of registers and counters, and in numerous other applications. The elimination of
switch contact bounce is a clever application utilizing the unique operating characteristics of flip-flops. In a
sequential logic circuit flip-flops serve as key memory elements. Analysis of such circuits are done through
truth tables or characteristic equations of flip-flops. The analysis result is normally presented through state

